मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
x संदर्भात फरक करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
अभिव्‍यक्‍ती जोडण्‍यासाठी किंवा विभाजित करण्‍यासाठी, त्‍यांचे विभाजक समान बनवण्‍यासाठी त्‍यांना विस्‍तृत करा. x+2 आणि x-3 चा लघुत्तम साधारण विभाजक \left(x-3\right)\left(x+2\right) आहे. \frac{x-3}{x-3} ला \frac{2}{x+2} वेळा गुणाकार करा. \frac{x+2}{x+2} ला \frac{7}{x-3} वेळा गुणाकार करा.
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} आणि \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
2\left(x-3\right)-7\left(x+2\right) मध्ये गुणाकार करा.
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
2x-6-7x-14 मधील टर्मप्रमाणे एकत्रित करा.
\frac{-5x-20}{x^{2}-x-6}
विस्तृत करा \left(x-3\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
अभिव्‍यक्‍ती जोडण्‍यासाठी किंवा विभाजित करण्‍यासाठी, त्‍यांचे विभाजक समान बनवण्‍यासाठी त्‍यांना विस्‍तृत करा. x+2 आणि x-3 चा लघुत्तम साधारण विभाजक \left(x-3\right)\left(x+2\right) आहे. \frac{x-3}{x-3} ला \frac{2}{x+2} वेळा गुणाकार करा. \frac{x+2}{x+2} ला \frac{7}{x-3} वेळा गुणाकार करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} आणि \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
2\left(x-3\right)-7\left(x+2\right) मध्ये गुणाकार करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
2x-6-7x-14 मधील टर्मप्रमाणे एकत्रित करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
x+2 च्या प्रत्येक टर्मला x-3 च्या प्रत्येक टर्मने गुणाकार करून वितरीत करण्‍यायोग्‍य गुणधर्म लागू करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
-x मिळविण्यासाठी 2x आणि -3x एकत्र करा.
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
कोणत्याही दोन डिफरंशिएबल फंक्शनसाठी, दोन फंक्शन्सच्या भागाकाराचा कृदंत ही अंशांच्या कृदंतांची विभाजकावेळी आणि विभाजाकांच्या कृदंतांची अंशांवेळी वजाबाकी आहे, अंश वर्गाने सर्वांचा भागाकार केलेला.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
सरलीकृत करा.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
-5x^{0} ला x^{2}-x^{1}-6 वेळा गुणाकार करा.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
2x^{1}-x^{0} ला -5x^{1}-20 वेळा गुणाकार करा.
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
समान आधाराच्या पॉवर्सचा गुणाकार करण्यासाठी, त्यांच्या घातांकांची बेरीज करा.
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
सरलीकृत करा.
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
टर्म्ससारखे एकत्रित करा.
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
कोणत्याही टर्मसाठी t, t^{1}=t.
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
0 वगळता कोणत्याही टर्मसाठी t, t^{0}=1.
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
कोणत्याही टर्मसाठी t, t\times 1=t आणि 1t=t.