मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

\frac{4\sqrt{2}-\left(\sqrt{2}\right)^{2}}{2\left(\sqrt{2}+1\right)}
\sqrt{2} ला 4-\sqrt{2} ने गुणण्यासाठी वितरीत करण्‍यायोग्‍य गुणधर्म वापरा.
\frac{4\sqrt{2}-2}{2\left(\sqrt{2}+1\right)}
\sqrt{2} ची वर्ग संख्या 2 आहे.
\frac{4\sqrt{2}-2}{2\sqrt{2}+2}
2 ला \sqrt{2}+1 ने गुणण्यासाठी वितरीत करण्‍यायोग्‍य गुणधर्म वापरा.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right)}
अंश आणि विभाजक 2\sqrt{2}-2 ने गुणाकार करून \frac{4\sqrt{2}-2}{2\sqrt{2}+2} चे विभाजक तर्कसंगत करा.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}\right)^{2}-2^{2}}
\left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right) वाचारात घ्या. हा नियम वापरून चौरसांच्या फरकामध्ये गुणाकाराची स्थित्यंतरे केली जाऊ शकतात: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{2^{2}\left(\sqrt{2}\right)^{2}-2^{2}}
विस्तृत करा \left(2\sqrt{2}\right)^{2}.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4\left(\sqrt{2}\right)^{2}-2^{2}}
2 च्या पॉवरसाठी 2 मोजा आणि 4 मिळवा.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4\times 2-2^{2}}
\sqrt{2} ची वर्ग संख्या 2 आहे.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{8-2^{2}}
8 मिळविण्यासाठी 4 आणि 2 चा गुणाकार करा.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{8-4}
2 च्या पॉवरसाठी 2 मोजा आणि 4 मिळवा.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4}
4 मिळविण्यासाठी 8 मधून 4 वजा करा.
\frac{8\left(\sqrt{2}\right)^{2}-8\sqrt{2}-4\sqrt{2}+4}{4}
2\sqrt{2}-2 च्या प्रत्येक टर्मला 4\sqrt{2}-2 च्या प्रत्येक टर्मने गुणाकार करून वितरीत करण्‍यायोग्‍य गुणधर्म लागू करा.
\frac{8\times 2-8\sqrt{2}-4\sqrt{2}+4}{4}
\sqrt{2} ची वर्ग संख्या 2 आहे.
\frac{16-8\sqrt{2}-4\sqrt{2}+4}{4}
16 मिळविण्यासाठी 8 आणि 2 चा गुणाकार करा.
\frac{16-12\sqrt{2}+4}{4}
-12\sqrt{2} मिळविण्यासाठी -8\sqrt{2} आणि -4\sqrt{2} एकत्र करा.
\frac{20-12\sqrt{2}}{4}
20 मिळविण्यासाठी 16 आणि 4 जोडा.
5-3\sqrt{2}
5-3\sqrt{2} मिळविण्यासाठी 20-12\sqrt{2} च्या प्रत्येक टर्मला 4 ने भागा.