मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
y संदर्भात फरक करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

\frac{y^{4}}{y^{1}}
पदावली सरलीकृत करण्यासाठी घातांकाचे नियम वापरा.
y^{4-1}
समान आधाराच्या पॉवर्सचा भागाकार करण्यासाठी, अंशाच्या घातांकामधून विभाजकाचा घातांक वजा करा.
y^{3}
4 मधून 1 वजा करा.
y^{4}\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y})+\frac{1}{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{4})
कोणत्याही दोन डिफरंशिएबल फंक्शन्ससाठी, दोन फंक्शनच्या उत्पादनाचे कृदंत हे द्वितीयेच्या कृदंताच्या प्रथम फंक्शन वेळा आणि प्रथमेच्या कृदंताच्या द्वितीय फंक्शन वेळा यांची बेरीज असते.
y^{4}\left(-1\right)y^{-1-1}+\frac{1}{y}\times 4y^{4-1}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
y^{4}\left(-1\right)y^{-2}+\frac{1}{y}\times 4y^{3}
सरलीकृत करा.
-y^{4-2}+4y^{-1+3}
समान आधाराच्या पॉवर्सचा गुणाकार करण्यासाठी, त्यांच्या घातांकांची बेरीज करा.
-y^{2}+4y^{2}
सरलीकृत करा.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{1}y^{4-1})
समान आधाराच्या पॉवर्सचा भागाकार करण्यासाठी, अंशाच्या घातांकामधून विभाजकाचा घातांक वजा करा.
\frac{\mathrm{d}}{\mathrm{d}y}(y^{3})
अंकगणित करा.
3y^{3-1}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
3y^{2}
अंकगणित करा.