मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
j संदर्भात फरक करा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

\frac{j^{-29}}{j^{-16}}
समान पाया असलेल्या घातांचा गुणाकार करण्यासाठी, त्यांचे घातांक जोडा. -16 मिळविण्यासाठी -7 आणि -9 जोडा.
\frac{1}{j^{13}}
j^{-29}j^{13} प्रमाणे j^{-16} पुन्हा लिहा. अंशांश आणि भागांश दोन्हींमध्ये j^{-29} रद्द करा.
\frac{\mathrm{d}}{\mathrm{d}j}(\frac{j^{-29}}{j^{-16}})
समान पाया असलेल्या घातांचा गुणाकार करण्यासाठी, त्यांचे घातांक जोडा. -16 मिळविण्यासाठी -7 आणि -9 जोडा.
\frac{\mathrm{d}}{\mathrm{d}j}(\frac{1}{j^{13}})
j^{-29}j^{13} प्रमाणे j^{-16} पुन्हा लिहा. अंशांश आणि भागांश दोन्हींमध्ये j^{-29} रद्द करा.
-\left(j^{13}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}j}(j^{13})
दोन डिफरंशिएबल फंक्शन f\left(u\right) आणि u=g\left(x\right) यांची F रचना असल्यास, म्हणजेच, जर F\left(x\right)=f\left(g\left(x\right)\right), तर F चे कृदंत हे u वेळा संदर्भात f चे कृदंत x च्या संदर्भात g चे कृदंत, म्हणजेच, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(j^{13}\right)^{-2}\times 13j^{13-1}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
-13j^{12}\left(j^{13}\right)^{-2}
सरलीकृत करा.