मूल्यांकन करा
\frac{3x-14}{x^{2}-25}
x संदर्भात फरक करा
\frac{-3x^{2}+28x-75}{\left(x^{2}-25\right)^{2}}
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{3}{x+5}+\frac{1}{\left(x-5\right)\left(x+5\right)}
x^{2}-25 घटक.
\frac{3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}+\frac{1}{\left(x-5\right)\left(x+5\right)}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. x+5 आणि \left(x-5\right)\left(x+5\right) चा लघुत्तम साधारण विभाजक \left(x-5\right)\left(x+5\right) आहे. \frac{x-5}{x-5} ला \frac{3}{x+5} वेळा गुणाकार करा.
\frac{3\left(x-5\right)+1}{\left(x-5\right)\left(x+5\right)}
\frac{3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} आणि \frac{1}{\left(x-5\right)\left(x+5\right)} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{3x-15+1}{\left(x-5\right)\left(x+5\right)}
3\left(x-5\right)+1 मध्ये गुणाकार करा.
\frac{3x-14}{\left(x-5\right)\left(x+5\right)}
3x-15+1 मधील टर्मप्रमाणे एकत्रित करा.
\frac{3x-14}{x^{2}-25}
विस्तृत करा \left(x-5\right)\left(x+5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{x+5}+\frac{1}{\left(x-5\right)\left(x+5\right)})
x^{2}-25 घटक.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}+\frac{1}{\left(x-5\right)\left(x+5\right)})
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. x+5 आणि \left(x-5\right)\left(x+5\right) चा लघुत्तम साधारण विभाजक \left(x-5\right)\left(x+5\right) आहे. \frac{x-5}{x-5} ला \frac{3}{x+5} वेळा गुणाकार करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-5\right)+1}{\left(x-5\right)\left(x+5\right)})
\frac{3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} आणि \frac{1}{\left(x-5\right)\left(x+5\right)} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-15+1}{\left(x-5\right)\left(x+5\right)})
3\left(x-5\right)+1 मध्ये गुणाकार करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-14}{\left(x-5\right)\left(x+5\right)})
3x-15+1 मधील टर्मप्रमाणे एकत्रित करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-14}{x^{2}-25})
\left(x-5\right)\left(x+5\right) वाचारात घ्या. हा नियम वापरून चौरसांच्या फरकामध्ये गुणाकाराची स्थित्यंतरे केली जाऊ शकतात: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. वर्ग 5.
\frac{\left(x^{2}-25\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}-14)-\left(3x^{1}-14\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-25)}{\left(x^{2}-25\right)^{2}}
कोणत्याही दोन डिफरंशिएबल फंक्शनसाठी, दोन फंक्शन्सच्या भागाकाराचा कृदंत ही अंशांच्या कृदंतांची विभाजकावेळी आणि विभाजाकांच्या कृदंतांची अंशांवेळी वजाबाकी आहे, अंश वर्गाने सर्वांचा भागाकार केलेला.
\frac{\left(x^{2}-25\right)\times 3x^{1-1}-\left(3x^{1}-14\right)\times 2x^{2-1}}{\left(x^{2}-25\right)^{2}}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
\frac{\left(x^{2}-25\right)\times 3x^{0}-\left(3x^{1}-14\right)\times 2x^{1}}{\left(x^{2}-25\right)^{2}}
अंकगणित करा.
\frac{x^{2}\times 3x^{0}-25\times 3x^{0}-\left(3x^{1}\times 2x^{1}-14\times 2x^{1}\right)}{\left(x^{2}-25\right)^{2}}
वितरीत करण्यायोग्य गुणधर्म वापरून विस्तृत करा.
\frac{3x^{2}-25\times 3x^{0}-\left(3\times 2x^{1+1}-14\times 2x^{1}\right)}{\left(x^{2}-25\right)^{2}}
समान आधाराच्या पॉवर्सचा गुणाकार करण्यासाठी, त्यांच्या घातांकांची बेरीज करा.
\frac{3x^{2}-75x^{0}-\left(6x^{2}-28x^{1}\right)}{\left(x^{2}-25\right)^{2}}
अंकगणित करा.
\frac{3x^{2}-75x^{0}-6x^{2}-\left(-28x^{1}\right)}{\left(x^{2}-25\right)^{2}}
अनावश्यक कंस दूर करा.
\frac{\left(3-6\right)x^{2}-75x^{0}-\left(-28x^{1}\right)}{\left(x^{2}-25\right)^{2}}
टर्म्ससारखे एकत्रित करा.
\frac{-3x^{2}-75x^{0}-\left(-28x^{1}\right)}{\left(x^{2}-25\right)^{2}}
3 मधून 6 वजा करा.
\frac{-3x^{2}-75x^{0}-\left(-28x\right)}{\left(x^{2}-25\right)^{2}}
कोणत्याही टर्मसाठी t, t^{1}=t.
\frac{-3x^{2}-75-\left(-28x\right)}{\left(x^{2}-25\right)^{2}}
0 वगळता कोणत्याही टर्मसाठी t, t^{0}=1.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}