मूल्यांकन करा
\frac{2x+3}{2x+1}
x संदर्भात फरक करा
-\frac{4}{\left(2x+1\right)^{2}}
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1}
1+x-2x^{2} घटक.
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \left(-x+1\right)\left(2x+1\right) आणि x-1 चा लघुत्तम साधारण विभाजक \left(x-1\right)\left(2x+1\right) आहे. \frac{-1}{-1} ला \frac{3}{\left(-x+1\right)\left(2x+1\right)} वेळा गुणाकार करा. \frac{2x+1}{2x+1} ला \frac{x}{x-1} वेळा गुणाकार करा.
\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} आणि \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}
3\left(-1\right)+x\left(2x+1\right) मध्ये गुणाकार करा.
\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)}
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)} मध्ये आधीच अवयव न काढलेल्या एक्सप्रेशन्सचा अवयव काढा.
\frac{2x+3}{2x+1}
अंशांश आणि भागांश दोन्हींमध्ये x-1 रद्द करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1})
1+x-2x^{2} घटक.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \left(-x+1\right)\left(2x+1\right) आणि x-1 चा लघुत्तम साधारण विभाजक \left(x-1\right)\left(2x+1\right) आहे. \frac{-1}{-1} ला \frac{3}{\left(-x+1\right)\left(2x+1\right)} वेळा गुणाकार करा. \frac{2x+1}{2x+1} ला \frac{x}{x-1} वेळा गुणाकार करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} आणि \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)})
3\left(-1\right)+x\left(2x+1\right) मध्ये गुणाकार करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)})
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)} मध्ये आधीच अवयव न काढलेल्या एक्सप्रेशन्सचा अवयव काढा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3}{2x+1})
अंशांश आणि भागांश दोन्हींमध्ये x-1 रद्द करा.
\frac{\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+3)-\left(2x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)}{\left(2x^{1}+1\right)^{2}}
कोणत्याही दोन डिफरंशिएबल फंक्शनसाठी, दोन फंक्शन्सच्या भागाकाराचा कृदंत ही अंशांच्या कृदंतांची विभाजकावेळी आणि विभाजाकांच्या कृदंतांची अंशांवेळी वजाबाकी आहे, अंश वर्गाने सर्वांचा भागाकार केलेला.
\frac{\left(2x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+3\right)\times 2x^{1-1}}{\left(2x^{1}+1\right)^{2}}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
\frac{\left(2x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+3\right)\times 2x^{0}}{\left(2x^{1}+1\right)^{2}}
अंकगणित करा.
\frac{2x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}\times 2x^{0}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
वितरीत करण्यायोग्य गुणधर्म वापरून विस्तृत करा.
\frac{2\times 2x^{1}+2x^{0}-\left(2\times 2x^{1}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
समान आधाराच्या पॉवर्सचा गुणाकार करण्यासाठी, त्यांच्या घातांकांची बेरीज करा.
\frac{4x^{1}+2x^{0}-\left(4x^{1}+6x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
अंकगणित करा.
\frac{4x^{1}+2x^{0}-4x^{1}-6x^{0}}{\left(2x^{1}+1\right)^{2}}
अनावश्यक कंस दूर करा.
\frac{\left(4-4\right)x^{1}+\left(2-6\right)x^{0}}{\left(2x^{1}+1\right)^{2}}
टर्म्ससारखे एकत्रित करा.
\frac{-4x^{0}}{\left(2x^{1}+1\right)^{2}}
4 मधून 4 वजा करा आणि 2 मधून 6 वजा करा.
\frac{-4x^{0}}{\left(2x+1\right)^{2}}
कोणत्याही टर्मसाठी t, t^{1}=t.
\frac{-4}{\left(2x+1\right)^{2}}
0 वगळता कोणत्याही टर्मसाठी t, t^{0}=1.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}