मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
वास्तव भाग
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

\frac{\left(3+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
विभाजकाच्या जटिल संयुग्मीद्वारा अंश आणि विभाजक दोन्हींचा गुणाकार करा, 1-i.
\frac{\left(3+2i\right)\left(1-i\right)}{1^{2}-i^{2}}
हा नियम वापरून चौरसांच्या फरकामध्ये गुणाकाराची स्थित्यंतरे केली जाऊ शकतात: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(1-i\right)}{2}
परिभाषेनुसार, i^{2} हे -1 आहे. भाजकाची गणना करा.
\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)i^{2}}{2}
आपण द्विपद गुणाकार करता त्याप्रमाणेच 3+2i आणि 1-i जटिल संख्यांचा गुणाकार करा.
\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right)}{2}
परिभाषेनुसार, i^{2} हे -1 आहे.
\frac{3-3i+2i+2}{2}
3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right) मध्ये गुणाकार करा.
\frac{3+2+\left(-3+2\right)i}{2}
खरे आणि कल्पनेतील भाग 3-3i+2i+2 मध्ये एकत्र करा.
\frac{5-i}{2}
3+2+\left(-3+2\right)i मध्ये बेरजा करा.
\frac{5}{2}-\frac{1}{2}i
\frac{5}{2}-\frac{1}{2}i मिळविण्यासाठी 5-i ला 2 ने भागाकार करा.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
विभाजकाच्या जटिल संयुग्मीद्वारा अंश आणि \frac{3+2i}{1+i} चा विभाजक दोन्हींचा गुणाकार करा, 1-i.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{1^{2}-i^{2}})
हा नियम वापरून चौरसांच्या फरकामध्ये गुणाकाराची स्थित्यंतरे केली जाऊ शकतात: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{2})
परिभाषेनुसार, i^{2} हे -1 आहे. भाजकाची गणना करा.
Re(\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)i^{2}}{2})
आपण द्विपद गुणाकार करता त्याप्रमाणेच 3+2i आणि 1-i जटिल संख्यांचा गुणाकार करा.
Re(\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right)}{2})
परिभाषेनुसार, i^{2} हे -1 आहे.
Re(\frac{3-3i+2i+2}{2})
3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right) मध्ये गुणाकार करा.
Re(\frac{3+2+\left(-3+2\right)i}{2})
खरे आणि कल्पनेतील भाग 3-3i+2i+2 मध्ये एकत्र करा.
Re(\frac{5-i}{2})
3+2+\left(-3+2\right)i मध्ये बेरजा करा.
Re(\frac{5}{2}-\frac{1}{2}i)
\frac{5}{2}-\frac{1}{2}i मिळविण्यासाठी 5-i ला 2 ने भागाकार करा.
\frac{5}{2}
\frac{5}{2}-\frac{1}{2}i चा खरा भाग \frac{5}{2} आहे.