मूल्यांकन करा
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
m संदर्भात फरक करा
\frac{-m^{4}+2mn^{3}+n^{4}-2nm^{3}-3\left(mn\right)^{2}}{\left(m^{3}+n^{3}\right)^{2}}
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m}{\left(m+n\right)\left(m-n\right)}-\frac{1}{m-n}
m^{3}+n^{3} घटक. m^{2}-n^{2} घटक.
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \left(m+n\right)\left(m^{2}-mn+n^{2}\right) आणि \left(m+n\right)\left(m-n\right) चा लघुत्तम साधारण विभाजक \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) आहे. \frac{m-n}{m-n} ला \frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} वेळा गुणाकार करा. \frac{m^{2}-mn+n^{2}}{m^{2}-mn+n^{2}} ला \frac{2m}{\left(m+n\right)\left(m-n\right)} वेळा गुणाकार करा.
\frac{2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} आणि \frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right) मध्ये गुणाकार करा.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) आणि m-n चा लघुत्तम साधारण विभाजक \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) आहे. \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} ला \frac{1}{m-n} वेळा गुणाकार करा.
\frac{2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} आणि \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right) मध्ये गुणाकार करा.
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3} मधील टर्मप्रमाणे एकत्रित करा.
\frac{\left(m-n\right)\left(m^{2}+mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} मध्ये आधीच अवयव न काढलेल्या एक्सप्रेशन्सचा अवयव काढा.
\frac{m^{2}+mn+n^{2}}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}
अंशांश आणि भागांश दोन्हींमध्ये m-n रद्द करा.
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
विस्तृत करा \left(m+n\right)\left(m^{2}-mn+n^{2}\right).
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}