मूल्यांकन करा
-4
घटक
-4
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. x+y आणि x-y चा लघुत्तम साधारण विभाजक \left(x+y\right)\left(x-y\right) आहे. \frac{x-y}{x-y} ला \frac{x-y}{x+y} वेळा गुणाकार करा. \frac{x+y}{x+y} ला \frac{x+y}{x-y} वेळा गुणाकार करा.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} आणि \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right) मध्ये गुणाकार करा.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
x^{2}-y^{2} घटक.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} ला 1 वेळा गुणाकार करा.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} आणि \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right) मध्ये गुणाकार करा.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
\frac{-4xy}{\left(x+y\right)\left(x-y\right)} ला \frac{xy}{\left(x+y\right)\left(x-y\right)} च्या व्युत्क्रमणाने गुणून \frac{-4xy}{\left(x+y\right)\left(x-y\right)} ला \frac{xy}{\left(x+y\right)\left(x-y\right)} ने भागाकार करा.
-4
अंशांश आणि भागांश दोन्हींमध्ये xy\left(x+y\right)\left(x-y\right) रद्द करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}