घटक
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
मूल्यांकन करा
20x^{4}+31x^{2}-9
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
20x^{4}+31x^{2}-9=0
पदावलीच्या घटकासाठी, समीकरण सोडवा, जेथे 0 च्या समतुल्य असते.
±\frac{9}{20},±\frac{9}{10},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{20},±\frac{3}{10},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{20},±\frac{1}{10},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
रॅशनल परिमेय प्रमेयानुसार, सर्व बहुपदीय रॅशनल परिमेय \frac{p}{q} स्वरूपात आहेत, जेथे p स्थिर टर्म -9 ला विभाजित करते आणि q अग्रगण्य गुणांक 20 ला विभाजित करते. सर्व उमेदवारांची यादी करा \frac{p}{q}.
x=\frac{1}{2}
तंतोतंत मूल्यानुसार अगदी लहानपासून सुरू करून, सर्व इंटिगर मूल्ये वापरण्याचा प्रयत्न करून असे एक रूट करा. कोणतेही इंटिगर रूट्स आढळले नसल्यास, अंश वापरून पाहा.
10x^{3}+5x^{2}+18x+9=0
फॅक्टर थिओरेमनुसार, प्रत्येक परिमेय k साठी x-k बहुपदी अवयव आहे. 10x^{3}+5x^{2}+18x+9 मिळविण्यासाठी 20x^{4}+31x^{2}-9 ला 2\left(x-\frac{1}{2}\right)=2x-1 ने भागाकार करा. पदावलीच्या घटकासाठी, समीकरण सोडवा, जेथे ती 0 च्या समतुल्य असते.
±\frac{9}{10},±\frac{9}{5},±\frac{9}{2},±9,±\frac{3}{10},±\frac{3}{5},±\frac{3}{2},±3,±\frac{1}{10},±\frac{1}{5},±\frac{1}{2},±1
रॅशनल परिमेय प्रमेयानुसार, सर्व बहुपदीय रॅशनल परिमेय \frac{p}{q} स्वरूपात आहेत, जेथे p स्थिर टर्म 9 ला विभाजित करते आणि q अग्रगण्य गुणांक 10 ला विभाजित करते. सर्व उमेदवारांची यादी करा \frac{p}{q}.
x=-\frac{1}{2}
तंतोतंत मूल्यानुसार अगदी लहानपासून सुरू करून, सर्व इंटिगर मूल्ये वापरण्याचा प्रयत्न करून असे एक रूट करा. कोणतेही इंटिगर रूट्स आढळले नसल्यास, अंश वापरून पाहा.
5x^{2}+9=0
फॅक्टर थिओरेमनुसार, प्रत्येक परिमेय k साठी x-k बहुपदी अवयव आहे. 5x^{2}+9 मिळविण्यासाठी 10x^{3}+5x^{2}+18x+9 ला 2\left(x+\frac{1}{2}\right)=2x+1 ने भागाकार करा. पदावलीच्या घटकासाठी, समीकरण सोडवा, जेथे ती 0 च्या समतुल्य असते.
x=\frac{0±\sqrt{0^{2}-4\times 5\times 9}}{2\times 5}
फॉर्म ax^{2}+bx+c=0 ची समीकरणे वर्गसमीकरण सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडवली जाऊ शकतात. वर्गसमीकरण सुत्रामध्ये a साठी 5, b साठी 0 आणि c साठी 9 विकल्प आहे.
x=\frac{0±\sqrt{-180}}{10}
गणना करा.
5x^{2}+9
5x^{2}+9 बहुपदीचे अवयव पाडलेले नाहीत कारण त्यांच्याकडे कोणतेही परिमेय मूळ नाहीत.
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
मिळविलेले परिमेय वापरून घटक पदावली पुन्हा लिहा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}