मुख्य सामग्री वगळा
घटक
Tick mark Image
मूल्यांकन करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3\left(-x^{2}-4+4x\right)
3 मधून घटक काढा.
-x^{2}+4x-4
-x^{2}-4+4x वाचारात घ्या. मानक फॉर्ममध्ये ठेवण्यासाठी बहुपदी पुन्हा मांडा. टर्म्स उच्च पॉवरपासून निम्न पॉवरपर्यंत या क्रमात ठेवा.
a+b=4 ab=-\left(-4\right)=4
समूहीकृत करून अभिव्‍यक्‍ती काढा. अगोदर, डाव्‍या हाताची बाजू -x^{2}+ax+bx-4 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
1,4 2,2
ab सकारात्‍मक असल्‍यापासून a व b मध्‍ये समान चिन्‍ह आहे. a+b सकारात्‍मक असल्‍याने, a व b दोन्‍ही सकारात्‍मक आहेत. 4 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1+4=5 2+2=4
प्रत्‍येक पेअरची बेरीज करा.
a=2 b=2
बेरी 4 येत असलेल्‍या पेअरचे निरसन.
\left(-x^{2}+2x\right)+\left(2x-4\right)
\left(-x^{2}+2x\right)+\left(2x-4\right) प्रमाणे -x^{2}+4x-4 पुन्हा लिहा.
-x\left(x-2\right)+2\left(x-2\right)
पहिल्‍या आणि 2 मध्‍ये अन्‍य समूहात -x घटक काढा.
\left(x-2\right)\left(-x+2\right)
वितरण गुणधर्माचा वापर करून x-2 सामान्य पदाचे घटक काढा.
3\left(x-2\right)\left(-x+2\right)
पूर्ण घटक अभिव्यक्ती पुन्हा लिहा.
-3x^{2}+12x-12=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
वर्ग 12.
x=\frac{-12±\sqrt{144+12\left(-12\right)}}{2\left(-3\right)}
-3 ला -4 वेळा गुणाकार करा.
x=\frac{-12±\sqrt{144-144}}{2\left(-3\right)}
-12 ला 12 वेळा गुणाकार करा.
x=\frac{-12±\sqrt{0}}{2\left(-3\right)}
144 ते -144 जोडा.
x=\frac{-12±0}{2\left(-3\right)}
0 चा वर्गमूळ घ्या.
x=\frac{-12±0}{-6}
-3 ला 2 वेळा गुणाकार करा.
-3x^{2}+12x-12=-3\left(x-2\right)\left(x-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी 2 आणि x_{2} साठी 2 बदला.