പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
Microsoft
|
Math Solver
സോൾവ് ചെയ്യുക
പരിശീലിക്കുക
നാടകം
വിഷയങ്ങൾ
പ്രീ-ആൾജിബ്ര
ശരാശരി
ദശ
ഏറ്റവും വലിയ പൊതു ഘടകം
ഏറ്റവും ചെറിയ സാധാരണ ഗുണിതം
പ്രവർത്തനക്രമം
ഭിന്നസംഖ്യകൾ
മിശ്രിത ഭിന്നസംഖ്യകൾ
പ്രൈം ഫാക്ടറൈസേഷൻ
എക്സ്പോണന്റുകൾ
മൂലസംഖ്യകൾ
ബീജഗണിതം
നിബന്ധനകള് പോലെ സംയോജിപ്പിക്കുക
ഒരു വേരിയബിളിനായി പരിഹാരം കണ്ടെത്തുക
ഘടകം
വിപുലീകരിക്കുക
ഭിന്നസംഖ്യകളെ വിലയിരുത്തുക
രേഖീയമായ സമവാക്യങ്ങൾ
ക്വാഡ്രാറ്റിക് സമവാക്യങ്ങൾ
അസമത്വങ്ങൾ
സമവാക്യങ്ങളുടെ വ്യവസ്ഥകൽ
മെട്രിക്സസ്
ത്രികോണമിതി
എളുപ്പമാക്കുക
മൂല്യം നിര്ണ്ണയിക്കുക
ഗ്രാഫുകൾ
സമവാക്യങ്ങൾ പരിഹരിക്കുക
കാൽക്കുലസ്
ഡെറിവേറ്റീവുകൾ
ഇന്റഗ്രലുകൾ
പരിധികൾ
ബീജഗണിത ഇൻപുട്ടുകൾ
ത്രികോണമിതി ഇൻപുട്ടുകൾ
Calculus Inputs
മാട്രിക്സ് ഇൻപുട്ടുകൾ
സോൾവ് ചെയ്യുക
പരിശീലിക്കുക
നാടകം
വിഷയങ്ങൾ
പ്രീ-ആൾജിബ്ര
ശരാശരി
ദശ
ഏറ്റവും വലിയ പൊതു ഘടകം
ഏറ്റവും ചെറിയ സാധാരണ ഗുണിതം
പ്രവർത്തനക്രമം
ഭിന്നസംഖ്യകൾ
മിശ്രിത ഭിന്നസംഖ്യകൾ
പ്രൈം ഫാക്ടറൈസേഷൻ
എക്സ്പോണന്റുകൾ
മൂലസംഖ്യകൾ
ബീജഗണിതം
നിബന്ധനകള് പോലെ സംയോജിപ്പിക്കുക
ഒരു വേരിയബിളിനായി പരിഹാരം കണ്ടെത്തുക
ഘടകം
വിപുലീകരിക്കുക
ഭിന്നസംഖ്യകളെ വിലയിരുത്തുക
രേഖീയമായ സമവാക്യങ്ങൾ
ക്വാഡ്രാറ്റിക് സമവാക്യങ്ങൾ
അസമത്വങ്ങൾ
സമവാക്യങ്ങളുടെ വ്യവസ്ഥകൽ
മെട്രിക്സസ്
ത്രികോണമിതി
എളുപ്പമാക്കുക
മൂല്യം നിര്ണ്ണയിക്കുക
ഗ്രാഫുകൾ
സമവാക്യങ്ങൾ പരിഹരിക്കുക
കാൽക്കുലസ്
ഡെറിവേറ്റീവുകൾ
ഇന്റഗ്രലുകൾ
പരിധികൾ
ബീജഗണിത ഇൻപുട്ടുകൾ
ത്രികോണമിതി ഇൻപുട്ടുകൾ
Calculus Inputs
മാട്രിക്സ് ഇൻപുട്ടുകൾ
അടിസ്ഥാനം
ബീജഗണിതം
ത്രികോണമിതി
കാൽക്കുലസ്
സ്റ്റാറ്റിസ്റ്റിക്സ്
മെട്രിക്സസ്
കഥാപാത്രങ്ങൾ
x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
ഗ്രാഫ്
രണ്ട് വശങ്ങളും 2D-യിൽ ഗ്രാഫ് ചെയ്യുക
2D-യിൽ ഗ്രാഫ് ചെയ്യുക
ക്വിസ്
Trigonometry
ഇതിന് സമാനമായ 5 ചോദ്യങ്ങൾ:
\sin ( x ) - cos ( x ) = 0
വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്നങ്ങൾ
Solve \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} ?
https://socratic.org/questions/58f66b0eb72cff6d065f28c0
\displaystyle{x}=\frac{\pi}{{4}}+{n}\pi Explanation: We have: \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} Which we can rearrange as follows: \displaystyle\therefore{\sin{{x}}}={\cos{{x}}} ...
I confused with trigonometry. \sin x - \cos x = 1
https://math.stackexchange.com/q/2837121
\frac{1}{\sqrt2}\sin{x}-\frac{1}{\sqrt2}\cos{x}=\frac{1}{\sqrt2} or \sin\left(x-45^{\circ}\right)=\sin45^{\circ}, which gives x-45^{\circ}=45^{\circ}+360^{\circ}k, where k is an integer ...
How do you solve \displaystyle{\sin{{2}}}{x}-{\cos{{x}}}={0} ?
https://socratic.org/questions/how-do-you-solve-sin-2x-cos-x-0
Use the important double angle identity \displaystyle{\sin{{2}}}{x}={2}{\sin{{x}}}{\cos{{x}}} to start the solving process. Explanation: \displaystyle{2}{\sin{{x}}}{\cos{{x}}}-{\cos{{x}}}={0} ...
How to solve \sin 3x - \cos x = 0
https://www.quora.com/How-do-I-solve-sin-3x-cos-x-0
\begin{align} &\ \ \sin 3x - \cos x = 0 \\ \Leftrightarrow &\ \ \sin 3x - \sin \left( \dfrac{\pi}{2}-x \right) = 0 \\ \Leftrightarrow &\ \ 2 \cos\dfrac{3x + \left( \frac{\pi}{2}-x \right)}{2} \sin\dfrac{3x - \left( \frac{\pi}{2}-x \right)}{2} = 0 \\ \Leftrightarrow &\ \ 2 \cos \dfrac{2x + \frac{\pi}{2}}{2} \sin \dfrac{4x - \frac{\pi}{2}}{2} = 0 \\ \Leftrightarrow &\ \ \dfrac{2x + \frac{\pi}{2}}{2} = \dfrac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ or } \dfrac{4x - \frac{\pi}{2}}{2} = k\pi, k \in \mathbb{Z} \\ \Leftrightarrow &\ \ x = \dfrac{\pi}{4} + k\pi, k \in \mathbb{Z} \text{ or } x = \dfrac{\pi}{8} + \dfrac{k\pi}{2}, k \in \mathbb{Z} \end{align}
Find the general solution to \sin(4x)-\cos(x)=0 [closed]
https://math.stackexchange.com/questions/1735307/find-the-general-solution-to-sin4x-cosx-0
\sin(4x)−\cos(x)=0 2\sin(2x)\cos(2x)-\cos(x)=0 4\sin(x)\cos(x)(1-2\sin^2(x))-\cos(x)=0 One possible solution is \cos(x)=0 4\sin(x)(1-2\sin^2(x))=1 8\sin^3(x)-4\sin(x)+1=0 Now, let \sin(x)=m ...
Prove that \sin x - x\cos x = 0 has only one solution in [-\frac{\pi}{2}, \frac{\pi}{2}]
https://math.stackexchange.com/q/1355080/166535
Let f(x)=\sin x-x\cos x. You have f'(x)=x\sin x. Since \sin x has the same sign as x for x\in[-\pi/2,\pi/2], we know that f'(x)\geq0 in this interval and f'(x)>0 for x\in[-\pi/2,\pi/2]\setminus\{0\} ...
കൂടുതൽ ഇനങ്ങൾ
പങ്കിടുക
പകർത്തുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
സമാന പ്രശ്നങ്ങൾ
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
മുകളിലേക്ക് പോകുക