Kimi Pārōnaki e ai ki x
-\frac{1}{\left(\sin(x)\right)^{2}}
Aromātai
\cot(x)
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\cos(x)}{\sin(x)})
Whakamahia te tautuhinga o te pātapa taupoki.
\frac{\sin(x)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))-\cos(x)\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\left(\sin(x)\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\sin(x)\left(-\sin(x)\right)-\cos(x)\cos(x)}{\left(\sin(x)\right)^{2}}
Ko te pārōnaki o sin(x) ko cos(x), me te pārōnaki o cos(x) ko −sin(x).
-\frac{\left(\sin(x)\right)^{2}+\left(\cos(x)\right)^{2}}{\left(\sin(x)\right)^{2}}
Whakarūnātia.
-\frac{1}{\left(\sin(x)\right)^{2}}
Whakamahia te Tuakiri Pythagorean.
-\left(\csc(x)\right)^{2}
Whakamahia te tautuhinga o te aho taupoki.