Aromātai
\sqrt{3}\approx 1.732050808
Tohaina
Kua tāruatia ki te papatopenga
\tan(\pi +\frac{\pi }{3})=\frac{\tan(\pi )+\tan(\frac{\pi }{3})}{1-\tan(\pi )\tan(\frac{\pi }{3})}
Whakamahia \tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)} ina x=\pi me te y=\frac{\pi }{3} kia whiwhi i te hua.
\frac{0+\tan(\frac{\pi }{3})}{1-0\tan(\frac{\pi }{3})}
Tīkina te uara \tan(\pi ) mai i te ripanga uara pākoki. Whakakapia te uara ki te taurunga me te tauraro.
\frac{0+\sqrt{3}}{1-0\sqrt{3}}
Tīkina te uara \tan(\frac{\pi }{3}) mai i te ripanga uara pākoki. Whakakapia te uara ki te taurunga me te tauraro.
\sqrt{3}
Mahia ngā tātaitai.