Tīpoka ki ngā ihirangi matua
Microsoft
|
Math Solver
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Taketake
papara
ahuatoru
tatau
Ngā tatauranga
matrices
Ngā Pūāhua
Aromātai
4a^{2}
Kimi Pārōnaki e ai ki a
8a
Pātaitai
Algebra
\sqrt{\sqrt{256a^8}}
Ngā Raru Ōrite mai i te Rapu Tukutuku
4sqrt(256a^12b^20)
https://www.tiger-algebra.com/drill/4sqrt(256a~12b~20)/
sqrt(256a12b20) Simplified Root : 16 a6b10 Simplify : sqrt(256a12b20) Step 1 :Simplify the Integer part of the SQRT Factor 256 into its prime factors 256 = 28 To simplify a ...
sqrt(275t^8pq^7)
https://www.tiger-algebra.com/drill/sqrt(275t~8pq~7)/
sqrt(275t8pq7) Simplified Root : 5 t4q3 • sqrt(11pq) Simplify : sqrt(275t8pq7) Step 1 :Simplify the Integer part of the SQRT Factor 275 into its prime factors 275 = 52 • 11 ...
sqrt(24a^9b^14)
https://www.tiger-algebra.com/drill/sqrt(24a~9b~14)/
sqrt(24a9b14) Simplified Root : 2 a4b7 • sqrt(6a) Simplify : sqrt(24a9b14) Step 1 :Simplify the Integer part of the SQRT Factor 24 into its prime factors 24 = 23 • 3 To ...
How do you find the absolute maximum and absolute minimum values of f on the given interval: \displaystyle{f{{\left({t}\right)}}}={t}\sqrt{{{25}-{t}^{{2}}}} on [-1, 5]?
https://socratic.org/questions/how-do-you-find-the-absolute-maximum-and-absolute-minimum-values-of-f-on-the-giv-3
Reqd. extreme values are \displaystyle-\frac{{25}}{{2}}{\quad\text{and}\quad}\frac{{25}}{{2}} . Explanation: We use substitution \displaystyle{t}={5}{\sin{{x}}},{t}\in{\left[-{1},{5}\right]} ...
How do you simplify \displaystyle\sqrt{{{\left(-{21}\right)}^{{{2}}}+{\left({25}\right)}^{{{2}}}}} ?
https://socratic.org/questions/how-do-you-simplify-sqrt-21-2-25-2
See a solution process below: Explanation: Square and add the two terms in the radical: \displaystyle\sqrt{{{441}+{625}}}\Rightarrow\sqrt{{{1066}}}
How do you multiply \displaystyle{\left(\sqrt{{3}}+{2}\sqrt{{5}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-multiply-sqrt3-2sqrt5-2
\displaystyle{\left(\sqrt{{{3}}}+{2}\sqrt{{{5}}}\right)}^{{2}} \displaystyle{\left(\text{XXXX}\right)} Explanation: \displaystyle{\left(\sqrt{{{3}}}+{2}\sqrt{{{5}}}\right)}^{{2}} \displaystyle{\left(\text{XXXX}\right)} ...
Ētahi atu Ngā tūemi
Tohaina
Tārua
Kua tāruatia ki te papatopenga
Ngā Raru Ōrite
\sqrt{40}
\sqrt{99a^3}
\sqrt{\frac{16}{25}}
\sqrt{3} \times \sqrt{3a^4}
\sqrt{\sqrt{256a^8}}
\sqrt{196}
Hoki ki runga