Tīpoka ki ngā ihirangi matua
Microsoft
|
Math Solver
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Taketake
papara
ahuatoru
tatau
Ngā tatauranga
matrices
Ngā Pūāhua
mode(2,4,5,3,2,4,5,6,4,3,2)
Aromātai
2,4
Pātaitai
mode(2,4,5,3,2,4,5,6,4,3,2)
Ngā Raru Ōrite mai i te Rapu Tukutuku
mn+1 \equiv 0 \pmod{24} then : m+n \equiv 0 \pmod{24} using group theory
https://math.stackexchange.com/questions/2350421/mn1-equiv-0-pmod24-then-mn-equiv-0-pmod24-using-group-theory
You're trying to prove that if mn \equiv -1 \pmod{24} then m \equiv -n \pmod{24}. Let k = -n. Then you're trying to show that if -mk \equiv -1 \pmod{24} then m \equiv k \pmod{24}. Of ...
Can we ever have \Gamma \models \perp
https://math.stackexchange.com/questions/2639449/can-we-ever-have-gamma-models-perp
That's exactly right: "\Gamma\models\perp" is equivalent to "\Gamma has no model" (or "\Gamma is unsatisfiable").
Is this proof about Mersenne numbers acceptable?
https://math.stackexchange.com/questions/86429/is-this-proof-about-mersenne-numbers-acceptable
There is nothing incorrect, but there are a few things that could be changed. We only need p>2. From 2^p \equiv 2 \pmod {p} one should conclude M_p=2^p -1\equiv 1 \pmod{p} immediately, without ...
Solving system of linear congruence equations
https://math.stackexchange.com/questions/473711/solving-system-of-linear-congruence-equations
The way you express your congruences is rather unconventional. Given that 23d\equiv1\pmod{40}, 73d\equiv1\pmod{102}, and that 40=2^3\times5 and 102=2\times3\times17, it follows that 23d\equiv1\pmod5, ...
How to prove an element of a given structure is not definable?
https://math.stackexchange.com/questions/927915/how-to-prove-an-element-of-a-given-structure-is-not-definable
HINT: If x is a definable element in a structure \mathcal M, then any automorphism of \cal M must satisfy f(x)=x. To show that 2 is not definable, find an automorphism of \cal A such that ...
The deduction theorem according to AIMA
https://math.stackexchange.com/questions/13251/the-deduction-theorem-according-to-aima
In order for \alpha\Rightarrow\beta to be valid, it must hold in all models; for \alpha\Rightarrow\beta to not be valid, there must be a model where it is false. If there is a model where it is ...
Ētahi atu Ngā tūemi
Tohaina
Tārua
Kua tāruatia ki te papatopenga
Ngā Raru Ōrite
mode(1,2,3,2,1,2,3)
mode(1,2,3)
mode(20,34,32,35,45,32,45,32,32)
mode(2,4,5,3,2,4,5,6,4,3,2)
mode(10,11,10,12)
mode(1,1,2,2,3,3)
Hoki ki runga