Tīpoka ki ngā ihirangi matua
Microsoft
|
Math Solver
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Taketake
papara
ahuatoru
tatau
Ngā tatauranga
matrices
Ngā Pūāhua
Aromātai
\frac{143}{32}=4.46875
Tirohia ngā hipanga rongoā
Ngā Upane Otinga
4 \frac{ 15 }{ 32 }
Whakareatia te 4 ki te 32, ka 128.
\frac{128+15}{32}
Tāpirihia te 128 ki te 15, ka 143.
\frac{143}{32}
Tauwehe
\frac{11 \cdot 13}{2 ^ {5}} = 4\frac{15}{32} = 4.46875
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
4 \frac{ 15 }{ 32 }
Ngā Raru Ōrite mai i te Rapu Tukutuku
15/300
https://www.tiger-algebra.com/drill/15/300/
15/300 Final result : 1 —— = 0.05000 20 Step by step solution : Step 1 : 1 Simplify —— 20 Final result : 1 —— = 0.05000 20 Processing ends successfully
Describe 15/(4,3,2,1) as a vector
https://math.stackexchange.com/questions/1902548/describe-15-4-3-2-1-as-a-vector
It looks as if this non-standard notation is asking to find the vector x of the smallest Euclidean norm so that x\cdot (4,3,2,1) = 15. This is the same as making an orthogonal projection (do you ...
What are the mean and standard deviation of a binomial probability distribution with \displaystyle{n}={4} and \displaystyle{p}=\frac{{15}}{{32}} ?
https://socratic.org/questions/what-are-the-mean-and-standard-deviation-of-a-binomial-probability-distribution--62
Mean \displaystyle={1}\frac{{7}}{{8}} SD \displaystyle={0.998} Explanation: Given- \displaystyle{n}={4} \displaystyle{p}=\frac{{15}}{{32}} \displaystyle{q}={1}-{p}={1}-\frac{{15}}{{32}}=\frac{{17}}{{32}} ...
105/30
https://www.tiger-algebra.com/drill/105/30/
105/30 Final result : 7 — = 3.50000 2 Step by step solution : Step 1 : 7 Simplify — 2 Final result : 7 — = 3.50000 2 Processing ends successfully
115/35
http://www.tiger-algebra.com/drill/115/35/
115/35 Final result : 23 —— = 3.28571 7 Step by step solution : Step 1 : 23 Simplify —— 7 Final result : 23 —— = 3.28571 7 Processing ends successfully
If acceleration is increasing at the constant rate of \displaystyle{2}\frac{{m}}{{s}^{{2}}} . Find the distance travelled in \displaystyle{5}{\sec} ? If initial velocity and acceleration both ...
https://socratic.org/questions/if-acceleration-is-increasing-at-the-constant-rate-of-2-m-s-2-find-the-distance-
After 5 seconds the object will have reached a speed of: \displaystyle{v}={5}{s}\times{2}{m}{/}{s}^{{2}}={10}{m}{/}{s} Explanation: Since the speed goes up from 0 to 10 m/s at a constant rate, ...
Ētahi atu Ngā tūemi
Tohaina
Tārua
Kua tāruatia ki te papatopenga
\frac{128+15}{32}
Whakareatia te 4 ki te 32, ka 128.
\frac{143}{32}
Tāpirihia te 128 ki te 15, ka 143.
Ngā Raru Ōrite
3 \frac{ 3 }{ 7 }
4 \frac{ 15 }{ 32 }
1 \frac{ 1 }{ 2 } +3 \frac{ 4 }{ 5 }
1 \frac{ 1 }{ 2 } -3 \frac{ 4 }{ 5 }
1 \frac{ 1 }{ 2 } \times 3 \frac{ 4 }{ 5 }
1 \frac{ 1 }{ 2 } \div 3 \frac{ 4 }{ 5 }
Hoki ki runga