Aromātai
\frac{y^{9}}{3}
Kimi Pārōnaki e ai ki y
3y^{8}
Tohaina
Kua tāruatia ki te papatopenga
\frac{x^{2}y^{5}}{3}\times \frac{y^{4}}{x^{2}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{x^{2}y^{5}y^{4}}{3x^{2}}
Me whakarea te \frac{x^{2}y^{5}}{3} ki te \frac{y^{4}}{x^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{y^{4}y^{5}}{3}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{y^{9}}{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 5 kia riro ai te 9.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x^{2}y^{5}}{3}\times \frac{y^{4}}{x^{2}})
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x^{2}y^{5}y^{4}}{3x^{2}})
Me whakarea te \frac{x^{2}y^{5}}{3} ki te \frac{y^{4}}{x^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{4}y^{5}}{3})
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{9}}{3})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 5 kia riro ai te 9.
9\times \frac{1}{3}y^{9-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
3y^{9-1}
Whakareatia 9 ki te \frac{1}{3}.
3y^{8}
Tango 1 mai i 9.