\left\{ \begin{array} { l } { x = 5y + 5 } \\ { 6 x - 4 y = 7 } \end{array} \right.
Whakaoti mō x, y
x=\frac{15}{26}\approx 0.576923077
y=-\frac{23}{26}\approx -0.884615385
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-5y=5
Whakaarohia te whārite tuatahi. Tangohia te 5y mai i ngā taha e rua.
x-5y=5,6x-4y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-5y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=5y+5
Me tāpiri 5y ki ngā taha e rua o te whārite.
6\left(5y+5\right)-4y=7
Whakakapia te 5+5y mō te x ki tērā atu whārite, 6x-4y=7.
30y+30-4y=7
Whakareatia 6 ki te 5+5y.
26y+30=7
Tāpiri 30y ki te -4y.
26y=-23
Me tango 30 mai i ngā taha e rua o te whārite.
y=-\frac{23}{26}
Whakawehea ngā taha e rua ki te 26.
x=5\left(-\frac{23}{26}\right)+5
Whakaurua te -\frac{23}{26} mō y ki x=5y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{115}{26}+5
Whakareatia 5 ki te -\frac{23}{26}.
x=\frac{15}{26}
Tāpiri 5 ki te -\frac{115}{26}.
x=\frac{15}{26},y=-\frac{23}{26}
Kua oti te pūnaha te whakatau.
x-5y=5
Whakaarohia te whārite tuatahi. Tangohia te 5y mai i ngā taha e rua.
x-5y=5,6x-4y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-5\\6&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-5\times 6\right)}&-\frac{-5}{-4-\left(-5\times 6\right)}\\-\frac{6}{-4-\left(-5\times 6\right)}&\frac{1}{-4-\left(-5\times 6\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&\frac{5}{26}\\-\frac{3}{13}&\frac{1}{26}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\times 5+\frac{5}{26}\times 7\\-\frac{3}{13}\times 5+\frac{1}{26}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{26}\\-\frac{23}{26}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{15}{26},y=-\frac{23}{26}
Tangohia ngā huānga poukapa x me y.
x-5y=5
Whakaarohia te whārite tuatahi. Tangohia te 5y mai i ngā taha e rua.
x-5y=5,6x-4y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x+6\left(-5\right)y=6\times 5,6x-4y=7
Kia ōrite ai a x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
6x-30y=30,6x-4y=7
Whakarūnātia.
6x-6x-30y+4y=30-7
Me tango 6x-4y=7 mai i 6x-30y=30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-30y+4y=30-7
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-26y=30-7
Tāpiri -30y ki te 4y.
-26y=23
Tāpiri 30 ki te -7.
y=-\frac{23}{26}
Whakawehea ngā taha e rua ki te -26.
6x-4\left(-\frac{23}{26}\right)=7
Whakaurua te -\frac{23}{26} mō y ki 6x-4y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+\frac{46}{13}=7
Whakareatia -4 ki te -\frac{23}{26}.
6x=\frac{45}{13}
Me tango \frac{46}{13} mai i ngā taha e rua o te whārite.
x=\frac{15}{26}
Whakawehea ngā taha e rua ki te 6.
x=\frac{15}{26},y=-\frac{23}{26}
Kua oti te pūnaha te whakatau.
Ngā Raru Ōrite
\left\{ \begin{array} { l } { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{array} \right.
\left\{ \begin{array} { l } { 3 x = 24 } \\ { x + 3 y = 17 } \end{array} \right.
\left\{ \begin{array} { l } { x = 5y + 5 } \\ { 6 x - 4 y = 7 } \end{array} \right.
\left\{ \begin{array} { l } { x = y + 2z } \\ { 3 x - z = 7 } \\ { 3 z - y = 7 } \end{array} \right.
\left\{ \begin{array} { l } { a + b + c + d = 20 } \\ { 3a -2c = 3 } \\ { b + d = 6} \\ { c + b = 8 } \end{array} \right.