Tīpoka ki ngā ihirangi matua
Microsoft
|
Math Solver
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Taketake
papara
ahuatoru
tatau
Ngā tatauranga
matrices
Ngā Pūāhua
Whakaoti mō b
b=\frac{3}{7}\approx 0.428571429
Tirohia ngā hipanga rongoā
Ngā Upane mō te Whakaoti Whārite Rārangi
5b = -2b + 3
Me tāpiri te 2b ki ngā taha e rua.
5b+2b=3
Pahekotia te 5b me 2b, ka 7b.
7b=3
Whakawehea ngā taha e rua ki te 7.
b=\frac{3}{7}
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
5b = -2b + 3
Ngā Raru Ōrite mai i te Rapu Tukutuku
How do you solve \displaystyle{2}{a}+{3}{b}=-{1} and \displaystyle{3}{a}+{5}{b}=-{2} ?
https://socratic.org/questions/how-do-you-solve-2a-3b-1-and-3a-5b-2
The solutions are \displaystyle{\left({a}={1},{b}=-{1}\right.} Explanation: \displaystyle{2}{a}+{3}{b}=−{1} , multiplying the equation by \displaystyle{3} \displaystyle{\left({6}{a}\right)}+{9}{b}=−{3} ...
How do you solve \displaystyle{5}{b}=-{235} ?
https://socratic.org/questions/how-do-you-solve-5b-235
\displaystyle{b}=-{47} Explanation: \displaystyle{5}{b}=-{235} divide both sides by \displaystyle{5} , \displaystyle\Rightarrow\frac{{\cancel{{5}}{b}}}{\cancel{{5}}}=-\frac{{235}}{{5}}=-{47} ...
Proving ∠CAD = 90◦
https://math.stackexchange.com/questions/2002089/proving-%E2%88%A0cad-90
First we show that point Y lies on the edges CD. Look at quadrilateral XCYD. We will prove that \angle \, CYD = 180^{\circ}. \angle\, XDY = \angle \, XAY = \alpha as inscribed in a circle. ...
How do you solve \displaystyle{5}{c}+{3}={4}{c}+{7} ?
https://socratic.org/questions/how-do-you-solve-5c-3-4c-7
See the solution process below: Explanation: Subtract \displaystyle{\left({3}\right)} and \displaystyle{\left({4}{c}\right)} from each side of the equation to solve for \displaystyle{c} ...
How do you solve \displaystyle{5}{j}=-{0.015} ?
https://socratic.org/questions/how-do-you-solve-5j-0-015
\displaystyle{j}=-{0.003} Explanation: Divide both sides of \displaystyle{5}{j}=-{0.015} by \displaystyle{5}
How do you solve \displaystyle-{2}{\left({b}+{11}\right)}={0} ?
https://socratic.org/questions/how-do-you-solve-2-b-11-0
\displaystyle{b}=-{11} Explanation: Divide both sides by (-2) \displaystyle+{\left({b}+{11}\right)}={0} \displaystyle{b}+{11}={0} Subtract 11 from both sides \displaystyle{b}=-{11}
Ētahi atu Ngā tūemi
Tohaina
Tārua
Kua tāruatia ki te papatopenga
5b+2b=3
Me tāpiri te 2b ki ngā taha e rua.
7b=3
Pahekotia te 5b me 2b, ka 7b.
b=\frac{3}{7}
Whakawehea ngā taha e rua ki te 7.
Ngā Raru Ōrite
5 = 2x + 3
5b = -2b + 3
\frac{r-3}{4}=2r
3(a-5)=2(6+a)
\frac{3n+6}{n-4}=2
Hoki ki runga