Tīpoka ki ngā ihirangi matua
Microsoft
|
Math Solver
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Taketake
papara
ahuatoru
tatau
Ngā tatauranga
matrices
Ngā Pūāhua
Aromātai
12\left(x-1\right)
Tirohia ngā hipanga rongoā
Ngā Upane Otinga
3(4x-4)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4x-4.
12x-12
Whakaroha
12x-12
Tirohia ngā hipanga rongoā
Ngā Upane Otinga
3(4x-4)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4x-4.
12x-12
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
3(4x-4)
Ngā Raru Ōrite mai i te Rapu Tukutuku
-3(4x-5)
https://www.tiger-algebra.com/drill/-3(4x-5)/
-3(4x-5) Final result : -3 • (4x - 5) Step by step solution : Step 1 :Equation at the end of step 1 : 0 - 3 • (4x - 5) Step 2 :Final result : -3 • (4x - 5) Processing ends successfully
How do you factor \displaystyle{34}{x}-{51} ?
https://socratic.org/questions/how-do-you-factor-34x-51
\displaystyle{17}{\left({2}{x}-{3}\right)} Explanation: We have: \displaystyle{34}{x}-{51} Are there any common factors in 34 and 51? Yes - 17. So let's factor that out: \displaystyle{17}{\left({2}{x}-{3}\right)}
4x-4<8
https://www.tiger-algebra.com/drill/4x-4%3C8/
4x-4<8 One solution was found : x < 3 Rearrange: Rearrange the equation by subtracting what is to the right of the greater than sign from both sides of the inequality : ...
How do you factor \displaystyle-{3}{x}-{4}{x} ?
https://socratic.org/questions/how-do-you-factor-3x-4x
\displaystyle{3}{x}-{4}{x}={\left({x}{\left(-{3}-{4}\right)}\right)}\ \text{ or }\ {\left({\left(-{7}\right)}{\left({x}\right)}\right)}\ \text{ or }\ {\left({\left({7}\right)}{\left(-{x}\right)}\right)} ...
How do you simplify \displaystyle-{8}{\left({3}{x}-{4}\right)} ?
https://socratic.org/questions/how-do-you-simplify-8-3x-4
24x + 32 Explanation: to simplify expressions of this type multiply out the bracket. -8(3x - 4 ) = \displaystyle-{8}\times{3}{x}-{8}\times-{4}=-{24}{x}+{32}
3x-4=5
https://www.tiger-algebra.com/drill/3x-4=5/
3x-4=5 One solution was found : x = 3 Rearrange: Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : ...
Ētahi atu Ngā tūemi
Tohaina
Tārua
Kua tāruatia ki te papatopenga
12x-12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4x-4.
12x-12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4x-4.
Ngā Raru Ōrite
7(2x-4)
(6-2)(x-2)
2x{(6)}^{2}
3(4x-4)
(x-1)(-1)
(x+9)(x+9)
Hoki ki runga