Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-2 me x+1 ko \left(x-2\right)\left(x+1\right). Whakareatia \frac{4}{x-2} ki te \frac{x+1}{x+1}. Whakareatia \frac{5}{x+1} ki te \frac{x-2}{x-2}.
\frac{4\left(x+1\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Tā te mea he rite te tauraro o \frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} me \frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x+4-5x+10}{\left(x-2\right)\left(x+1\right)}
Mahia ngā whakarea i roto o 4\left(x+1\right)-5\left(x-2\right).
\frac{-x+14}{\left(x-2\right)\left(x+1\right)}
Whakakotahitia ngā kupu rite i 4x+4-5x+10.
\frac{-x+14}{x^{2}-x-2}
Whakarohaina te \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-2 me x+1 ko \left(x-2\right)\left(x+1\right). Whakareatia \frac{4}{x-2} ki te \frac{x+1}{x+1}. Whakareatia \frac{5}{x+1} ki te \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+1\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Tā te mea he rite te tauraro o \frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} me \frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+4-5x+10}{\left(x-2\right)\left(x+1\right)})
Mahia ngā whakarea i roto o 4\left(x+1\right)-5\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{\left(x-2\right)\left(x+1\right)})
Whakakotahitia ngā kupu rite i 4x+4-5x+10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{x^{2}+x-2x-2})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-2 ki ia tau o x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{x^{2}-x-2})
Pahekotia te x me -2x, ka -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+14)-\left(-x^{1}+14\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-x^{1}-2\right)\left(-1\right)x^{1-1}-\left(-x^{1}+14\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\left(-1\right)x^{0}-\left(-x^{1}+14\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Whakarūnātia.
\frac{x^{2}\left(-1\right)x^{0}-x^{1}\left(-1\right)x^{0}-2\left(-1\right)x^{0}-\left(-x^{1}+14\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Whakareatia x^{2}-x^{1}-2 ki te -x^{0}.
\frac{x^{2}\left(-1\right)x^{0}-x^{1}\left(-1\right)x^{0}-2\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-1\right)x^{0}+14\times 2x^{1}+14\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Whakareatia -x^{1}+14 ki te 2x^{1}-x^{0}.
\frac{-x^{2}-\left(-x^{1}\right)-2\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-x^{1}\right)+14\times 2x^{1}+14\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-x^{2}+x^{1}+2x^{0}-\left(-2x^{2}+x^{1}+28x^{1}-14x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Whakarūnātia.
\frac{x^{2}-28x^{1}+16x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{x^{2}-28x+16x^{0}}{\left(x^{2}-x-2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{x^{2}-28x+16\times 1}{\left(x^{2}-x-2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{x^{2}-28x+16}{\left(x^{2}-x-2\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.