Atrast y
y=1
y=6
Graph
Koplietot
Kopēts starpliktuvē
a+b=-7 ab=6
Lai atrisinātu vienādojumu, y^{2}-7y+6, izmantojot formulu y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,-6 -2,-3
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir negatīvs, a un b ir negatīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 6.
-1-6=-7 -2-3=-5
Aprēķināt katra pāra summu.
a=-6 b=-1
Risinājums ir pāris, kas dod summu -7.
\left(y-6\right)\left(y-1\right)
Pārrakstiet reizinātājos sadalīto izteiksmi \left(y+a\right)\left(y+b\right), izmantojot iegūtās vērtības.
y=6 y=1
Lai atrastu vienādojumu risinājumus, atrisiniet y-6=0 un y-1=0.
a+b=-7 ab=1\times 6=6
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā y^{2}+ay+by+6. Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,-6 -2,-3
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir negatīvs, a un b ir negatīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 6.
-1-6=-7 -2-3=-5
Aprēķināt katra pāra summu.
a=-6 b=-1
Risinājums ir pāris, kas dod summu -7.
\left(y^{2}-6y\right)+\left(-y+6\right)
Pārrakstiet y^{2}-7y+6 kā \left(y^{2}-6y\right)+\left(-y+6\right).
y\left(y-6\right)-\left(y-6\right)
Sadaliet y pirmo un -1 otrajā grupā.
\left(y-6\right)\left(y-1\right)
Iznesiet kopējo reizinātāju y-6 pirms iekavām, izmantojot distributīvo īpašību.
y=6 y=1
Lai atrastu vienādojumu risinājumus, atrisiniet y-6=0 un y-1=0.
y^{2}-7y+6=0
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar -7 un c ar 6.
y=\frac{-\left(-7\right)±\sqrt{49-4\times 6}}{2}
Kāpiniet -7 kvadrātā.
y=\frac{-\left(-7\right)±\sqrt{49-24}}{2}
Reiziniet -4 reiz 6.
y=\frac{-\left(-7\right)±\sqrt{25}}{2}
Pieskaitiet 49 pie -24.
y=\frac{-\left(-7\right)±5}{2}
Izvelciet kvadrātsakni no 25.
y=\frac{7±5}{2}
Skaitļa -7 pretstats ir 7.
y=\frac{12}{2}
Tagad atrisiniet vienādojumu y=\frac{7±5}{2}, ja ± ir pluss. Pieskaitiet 7 pie 5.
y=6
Daliet 12 ar 2.
y=\frac{2}{2}
Tagad atrisiniet vienādojumu y=\frac{7±5}{2}, ja ± ir mīnuss. Atņemiet 5 no 7.
y=1
Daliet 2 ar 2.
y=6 y=1
Vienādojums tagad ir atrisināts.
y^{2}-7y+6=0
Tādus kvadrātiskos vienādojumus kā šis var atrisināt, papildinot vienādojumu, līdz tas ir pilnais kvadrātvienādojums. Lai tas būtu pilnais kvadrātvienādojums, vispirms vienādojumam ir jābūt šādā formātā x^{2}+bx=c.
y^{2}-7y+6-6=-6
Atņemiet 6 no vienādojuma abām pusēm.
y^{2}-7y=-6
Atņemot 6 no sevis, paliek 0.
y^{2}-7y+\left(-\frac{7}{2}\right)^{2}=-6+\left(-\frac{7}{2}\right)^{2}
Daliet locekļa x koeficientu -7 ar 2, lai iegūtu -\frac{7}{2}. Pēc tam abām vienādojuma pusēm pieskaitiet -\frac{7}{2} kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
y^{2}-7y+\frac{49}{4}=-6+\frac{49}{4}
Kāpiniet kvadrātā -\frac{7}{2}, kāpinot kvadrātā gan daļas skaitītāju, gan saucēju.
y^{2}-7y+\frac{49}{4}=\frac{25}{4}
Pieskaitiet -6 pie \frac{49}{4}.
\left(y-\frac{7}{2}\right)^{2}=\frac{25}{4}
Sadaliet reizinātājos y^{2}-7y+\frac{49}{4}. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Izvelciet abu vienādojuma pušu kvadrātsakni.
y-\frac{7}{2}=\frac{5}{2} y-\frac{7}{2}=-\frac{5}{2}
Vienkāršojiet.
y=6 y=1
Pieskaitiet \frac{7}{2} abās vienādojuma pusēs.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}