Atrast x
x=\frac{3y^{2}}{2}+1
Atrast y (complex solution)
y=-\frac{\sqrt{6\left(x-1\right)}}{3}
y=\frac{\sqrt{6\left(x-1\right)}}{3}
Atrast y
y=\frac{\sqrt{6\left(x-1\right)}}{3}
y=-\frac{\sqrt{6\left(x-1\right)}}{3}\text{, }x\geq 1
Graph
Koplietot
Kopēts starpliktuvē
y^{2}=\frac{2}{3}x-\frac{2}{3}
Izmantojiet distributīvo īpašību, lai reizinātu \frac{2}{3} ar x-1.
\frac{2}{3}x-\frac{2}{3}=y^{2}
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
\frac{2}{3}x=y^{2}+\frac{2}{3}
Pievienot \frac{2}{3} abās pusēs.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{y^{2}+\frac{2}{3}}{\frac{2}{3}}
Daliet abas vienādojuma puses ar \frac{2}{3}, kas ir tas pats, kas reizināt abas puses ar apgriezto daļskaitli.
x=\frac{y^{2}+\frac{2}{3}}{\frac{2}{3}}
Dalīšana ar \frac{2}{3} atsauc reizināšanu ar \frac{2}{3}.
x=\frac{3y^{2}}{2}+1
Daliet y^{2}+\frac{2}{3} ar \frac{2}{3}, reizinot y^{2}+\frac{2}{3} ar apgriezto daļskaitli \frac{2}{3} .
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}