Atrast y
y=-\frac{\left(x-8\right)\left(x^{2}+4\right)}{8}
Graph
Koplietot
Kopēts starpliktuvē
y=8-x+\left(\frac{1}{2}x-2\right)\left(2x-\frac{1}{4}x^{2}+1\right)-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Izmantojiet distributīvo īpašību, lai reizinātu \frac{1}{2} ar x-4.
y=8-x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-\frac{7}{2}x-2-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Izmantojiet distributīvo īpašību, lai reizinātu \frac{1}{2}x-2 ar 2x-\frac{1}{4}x^{2}+1 un apvienotu līdzīgos locekļus.
y=8-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Savelciet -x un -\frac{7}{2}x, lai iegūtu -\frac{9}{2}x.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
Atņemiet 2 no 8, lai iegūtu 6.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2\left(1-2x+\frac{1}{4}x^{2}\right)
Atņemiet 1 no 2, lai iegūtu 1.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2+4x-\frac{1}{2}x^{2}
Izmantojiet distributīvo īpašību, lai reizinātu -2 ar 1-2x+\frac{1}{4}x^{2}.
y=4-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}+4x-\frac{1}{2}x^{2}
Atņemiet 2 no 6, lai iegūtu 4.
y=4-\frac{1}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-\frac{1}{2}x^{2}
Savelciet -\frac{9}{2}x un 4x, lai iegūtu -\frac{1}{2}x.
y=4-\frac{1}{2}x+x^{2}-\frac{1}{8}x^{3}
Savelciet \frac{3}{2}x^{2} un -\frac{1}{2}x^{2}, lai iegūtu x^{2}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}