Atrast x
x=\frac{19x_{2}}{14}-\frac{x_{4}}{14}-\frac{2x_{3}}{7}
Atrast x_2
x_{2}=\frac{14x+4x_{3}+x_{4}}{19}
Graph
Koplietot
Kopēts starpliktuvē
4x_{3}-19x_{2}+14x=-x_{4}
Atņemiet x_{4} no abām pusēm. Atņemot nu nulles jebko, iegūst tā noliegumu.
-19x_{2}+14x=-x_{4}-4x_{3}
Atņemiet 4x_{3} no abām pusēm.
14x=-x_{4}-4x_{3}+19x_{2}
Pievienot 19x_{2} abās pusēs.
14x=19x_{2}-4x_{3}-x_{4}
Vienādojums ir standarta formā.
\frac{14x}{14}=\frac{19x_{2}-4x_{3}-x_{4}}{14}
Daliet abas puses ar 14.
x=\frac{19x_{2}-4x_{3}-x_{4}}{14}
Dalīšana ar 14 atsauc reizināšanu ar 14.
x=\frac{19x_{2}}{14}-\frac{x_{4}}{14}-\frac{2x_{3}}{7}
Daliet -x_{4}-4x_{3}+19x_{2} ar 14.
4x_{3}-19x_{2}+14x=-x_{4}
Atņemiet x_{4} no abām pusēm. Atņemot nu nulles jebko, iegūst tā noliegumu.
-19x_{2}+14x=-x_{4}-4x_{3}
Atņemiet 4x_{3} no abām pusēm.
-19x_{2}=-x_{4}-4x_{3}-14x
Atņemiet 14x no abām pusēm.
-19x_{2}=-14x-4x_{3}-x_{4}
Vienādojums ir standarta formā.
\frac{-19x_{2}}{-19}=\frac{-14x-4x_{3}-x_{4}}{-19}
Daliet abas puses ar -19.
x_{2}=\frac{-14x-4x_{3}-x_{4}}{-19}
Dalīšana ar -19 atsauc reizināšanu ar -19.
x_{2}=\frac{14x+4x_{3}+x_{4}}{19}
Daliet -x_{4}-4x_{3}-14x ar -19.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}