Pāriet uz galveno saturu
Atrast x (complex solution)
Tick mark Image
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

±4,±2,±1
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis 4 un ar q tiek dalīts vecākais koeficients 1. Uzskaitiet visus kandidātus \frac{p}{q}.
x=1
Atrodiet vienu šādu sakni, izmēģinot visas veselā skaitļa vērtības, sākot no mazākā pēc absolūtās vērtības. Ja nav atrasta neviena vesela skaitļa sakne, izmēģiniet daļskaitļus.
x^{3}-4x^{2}+6x-4=0
Pēc sadaliet teorēma, x-k ir katra saknes k polinoma koeficients. Daliet x^{4}-5x^{3}+10x^{2}-10x+4 ar x-1, lai iegūtu x^{3}-4x^{2}+6x-4. Atrisiniet vienādojumu, kur rezultāts ir vienāds ar 0.
±4,±2,±1
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis -4 un ar q tiek dalīts vecākais koeficients 1. Uzskaitiet visus kandidātus \frac{p}{q}.
x=2
Atrodiet vienu šādu sakni, izmēģinot visas veselā skaitļa vērtības, sākot no mazākā pēc absolūtās vērtības. Ja nav atrasta neviena vesela skaitļa sakne, izmēģiniet daļskaitļus.
x^{2}-2x+2=0
Pēc sadaliet teorēma, x-k ir katra saknes k polinoma koeficients. Daliet x^{3}-4x^{2}+6x-4 ar x-2, lai iegūtu x^{2}-2x+2. Atrisiniet vienādojumu, kur rezultāts ir vienāds ar 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 2}}{2}
Visus formas ax^{2}+bx+c=0 vienādojumus var atrisināt, izmantojot kvadrātsaknes formulu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrātsaknes formulā aizstājiet a ar 1, b ar -2 un c ar 2.
x=\frac{2±\sqrt{-4}}{2}
Veiciet aprēķinus.
x=1-i x=1+i
Atrisiniet vienādojumu x^{2}-2x+2=0, ja ± ir pluss un ± ir mīnuss.
x=1 x=2 x=1-i x=1+i
Visu atrasto risinājumu saraksts.
±4,±2,±1
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis 4 un ar q tiek dalīts vecākais koeficients 1. Uzskaitiet visus kandidātus \frac{p}{q}.
x=1
Atrodiet vienu šādu sakni, izmēģinot visas veselā skaitļa vērtības, sākot no mazākā pēc absolūtās vērtības. Ja nav atrasta neviena vesela skaitļa sakne, izmēģiniet daļskaitļus.
x^{3}-4x^{2}+6x-4=0
Pēc sadaliet teorēma, x-k ir katra saknes k polinoma koeficients. Daliet x^{4}-5x^{3}+10x^{2}-10x+4 ar x-1, lai iegūtu x^{3}-4x^{2}+6x-4. Atrisiniet vienādojumu, kur rezultāts ir vienāds ar 0.
±4,±2,±1
Saskaņā ar racionālo sakņu teorēmu visas polinoma racionālās saknes ir \frac{p}{q}, kur ar p tiek dalīts brīvais loceklis -4 un ar q tiek dalīts vecākais koeficients 1. Uzskaitiet visus kandidātus \frac{p}{q}.
x=2
Atrodiet vienu šādu sakni, izmēģinot visas veselā skaitļa vērtības, sākot no mazākā pēc absolūtās vērtības. Ja nav atrasta neviena vesela skaitļa sakne, izmēģiniet daļskaitļus.
x^{2}-2x+2=0
Pēc sadaliet teorēma, x-k ir katra saknes k polinoma koeficients. Daliet x^{3}-4x^{2}+6x-4 ar x-2, lai iegūtu x^{2}-2x+2. Atrisiniet vienādojumu, kur rezultāts ir vienāds ar 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 2}}{2}
Visus formas ax^{2}+bx+c=0 vienādojumus var atrisināt, izmantojot kvadrātsaknes formulu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrātsaknes formulā aizstājiet a ar 1, b ar -2 un c ar 2.
x=\frac{2±\sqrt{-4}}{2}
Veiciet aprēķinus.
x\in \emptyset
Tā kā reālajā laukā negatīva skaitļa kvadrātsakne nav definēta, risinājuma nav.
x=1 x=2
Visu atrasto risinājumu saraksts.