Sadalīt reizinātājos
\left(x-7\right)\left(x+5\right)x^{2}
Izrēķināt
\left(x-7\right)\left(x+5\right)x^{2}
Graph
Koplietot
Kopēts starpliktuvē
x^{2}\left(x^{2}-2x-35\right)
Iznesiet reizinātāju x^{2} pirms iekavām.
a+b=-2 ab=1\left(-35\right)=-35
Apsveriet x^{2}-2x-35. Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā x^{2}+ax+bx-35. Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,-35 5,-7
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir negatīvs, negatīvs skaitlis ir lielāks absolūtā vērtība nekā pozitīvs. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu -35.
1-35=-34 5-7=-2
Aprēķināt katra pāra summu.
a=-7 b=5
Risinājums ir pāris, kas dod summu -2.
\left(x^{2}-7x\right)+\left(5x-35\right)
Pārrakstiet x^{2}-2x-35 kā \left(x^{2}-7x\right)+\left(5x-35\right).
x\left(x-7\right)+5\left(x-7\right)
Sadaliet x pirmo un 5 otrajā grupā.
\left(x-7\right)\left(x+5\right)
Iznesiet kopējo reizinātāju x-7 pirms iekavām, izmantojot distributīvo īpašību.
x^{2}\left(x-7\right)\left(x+5\right)
Pārrakstiet reizinātājos sadalīto vienādojumu.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}