Pāriet uz galveno saturu
Sadalīt reizinātājos
Tick mark Image
Izrēķināt
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

a+b=-5 ab=1\times 4=4
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā x^{2}+ax+bx+4. Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,-4 -2,-2
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir negatīvs, a un b ir negatīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 4.
-1-4=-5 -2-2=-4
Aprēķināt katra pāra summu.
a=-4 b=-1
Risinājums ir pāris, kas dod summu -5.
\left(x^{2}-4x\right)+\left(-x+4\right)
Pārrakstiet x^{2}-5x+4 kā \left(x^{2}-4x\right)+\left(-x+4\right).
x\left(x-4\right)-\left(x-4\right)
Sadaliet x pirmo un -1 otrajā grupā.
\left(x-4\right)\left(x-1\right)
Iznesiet kopējo reizinātāju x-4 pirms iekavām, izmantojot distributīvo īpašību.
x^{2}-5x+4=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Kāpiniet -5 kvadrātā.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Reiziniet -4 reiz 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Pieskaitiet 25 pie -16.
x=\frac{-\left(-5\right)±3}{2}
Izvelciet kvadrātsakni no 9.
x=\frac{5±3}{2}
Skaitļa -5 pretstats ir 5.
x=\frac{8}{2}
Tagad atrisiniet vienādojumu x=\frac{5±3}{2}, ja ± ir pluss. Pieskaitiet 5 pie 3.
x=4
Daliet 8 ar 2.
x=\frac{2}{2}
Tagad atrisiniet vienādojumu x=\frac{5±3}{2}, ja ± ir mīnuss. Atņemiet 3 no 5.
x=1
Daliet 2 ar 2.
x^{2}-5x+4=\left(x-4\right)\left(x-1\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet 4 ar x_{1} un 1 ar x_{2}.