Pāriet uz galveno saturu
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

a+b=-4 ab=-5
Lai atrisinātu vienādojumu, sadaliet reizinātājos x^{2}-4x-5, izmantojot formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Lai atrastu a un b, iestatiet sistēmu, kas ir jāatrisina.
a=-5 b=1
Tā kā ab ir negatīvs, a un b ir pretējas pazīmes. Tā kā a+b ir negatīvs, negatīvajam skaitlim ir lielāka absolūtā vērtība nekā pozitīvs. Sistēmas atrisinājums ir tikai šāds pāris.
\left(x-5\right)\left(x+1\right)
Pārrakstiet reizinātājos sadalīto izteiksmi \left(x+a\right)\left(x+b\right), izmantojot iegūtās vērtības.
x=5 x=-1
Lai atrastu vienādojumu risinājumus, atrisiniet x-5=0 un x+1=0.
a+b=-4 ab=1\left(-5\right)=-5
Lai atrisinātu vienādojumu, kreiso pusi sadaliet reizinātājos grupējot. Vispirms kreisā puse ir jāpārraksta kā x^{2}+ax+bx-5. Lai atrastu a un b, iestatiet sistēmu, kas ir jāatrisina.
a=-5 b=1
Tā kā ab ir negatīvs, a un b ir pretējas pazīmes. Tā kā a+b ir negatīvs, negatīvajam skaitlim ir lielāka absolūtā vērtība nekā pozitīvs. Sistēmas atrisinājums ir tikai šāds pāris.
\left(x^{2}-5x\right)+\left(x-5\right)
Pārrakstiet x^{2}-4x-5 kā \left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
Iznesiet reizinātāju x pirms iekavām izteiksmē x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Iznesiet pirms iekavām kopīgo locekli x-5, izmantojot distributīvo īpašību.
x=5 x=-1
Lai atrastu vienādojumu risinājumus, atrisiniet x-5=0 un x+1=0.
x^{2}-4x-5=0
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar -4 un c ar -5.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Kāpiniet -4 kvadrātā.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Reiziniet -4 reiz -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Pieskaitiet 16 pie 20.
x=\frac{-\left(-4\right)±6}{2}
Izvelciet kvadrātsakni no 36.
x=\frac{4±6}{2}
Skaitļa -4 pretstats ir 4.
x=\frac{10}{2}
Tagad atrisiniet vienādojumu x=\frac{4±6}{2}, ja ± ir pluss. Pieskaitiet 4 pie 6.
x=5
Daliet 10 ar 2.
x=-\frac{2}{2}
Tagad atrisiniet vienādojumu x=\frac{4±6}{2}, ja ± ir mīnuss. Atņemiet 6 no 4.
x=-1
Daliet -2 ar 2.
x=5 x=-1
Vienādojums tagad ir atrisināts.
x^{2}-4x-5=0
Tādus kvadrātiskos vienādojumus kā šis var atrisināt, papildinot vienādojumu, līdz tas ir pilnais kvadrātvienādojums. Lai tas būtu pilnais kvadrātvienādojums, vispirms vienādojumam ir jābūt šādā formātā x^{2}+bx=c.
x^{2}-4x-5-\left(-5\right)=-\left(-5\right)
Pieskaitiet 5 abās vienādojuma pusēs.
x^{2}-4x=-\left(-5\right)
Atņemot -5 no sevis, paliek 0.
x^{2}-4x=5
Atņemiet -5 no 0.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Daliet locekļa x koeficientu -4 ar 2, lai iegūtu -2. Pēc tam abām vienādojuma pusēm pieskaitiet -2 kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}-4x+4=5+4
Kāpiniet -2 kvadrātā.
x^{2}-4x+4=9
Pieskaitiet 5 pie 4.
\left(x-2\right)^{2}=9
Sadaliet reizinātājos x^{2}-4x+4. Parasti, kad x^{2}+bx+c ir pilns kvadrāts, to vienmēr to var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x-2=3 x-2=-3
Vienkāršojiet.
x=5 x=-1
Pieskaitiet 2 abās vienādojuma pusēs.