Sadalīt reizinātājos
\left(x-7\right)\left(x+4\right)
Izrēķināt
\left(x-7\right)\left(x+4\right)
Graph
Koplietot
Kopēts starpliktuvē
a+b=-3 ab=1\left(-28\right)=-28
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā x^{2}+ax+bx-28. Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,-28 2,-14 4,-7
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir negatīvs, negatīvs skaitlis ir lielāks absolūtā vērtība nekā pozitīvs. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu -28.
1-28=-27 2-14=-12 4-7=-3
Aprēķināt katra pāra summu.
a=-7 b=4
Risinājums ir pāris, kas dod summu -3.
\left(x^{2}-7x\right)+\left(4x-28\right)
Pārrakstiet x^{2}-3x-28 kā \left(x^{2}-7x\right)+\left(4x-28\right).
x\left(x-7\right)+4\left(x-7\right)
Sadaliet x pirmo un 4 otrajā grupā.
\left(x-7\right)\left(x+4\right)
Iznesiet kopējo reizinātāju x-7 pirms iekavām, izmantojot distributīvo īpašību.
x^{2}-3x-28=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-28\right)}}{2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-28\right)}}{2}
Kāpiniet -3 kvadrātā.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2}
Reiziniet -4 reiz -28.
x=\frac{-\left(-3\right)±\sqrt{121}}{2}
Pieskaitiet 9 pie 112.
x=\frac{-\left(-3\right)±11}{2}
Izvelciet kvadrātsakni no 121.
x=\frac{3±11}{2}
Skaitļa -3 pretstats ir 3.
x=\frac{14}{2}
Tagad atrisiniet vienādojumu x=\frac{3±11}{2}, ja ± ir pluss. Pieskaitiet 3 pie 11.
x=7
Daliet 14 ar 2.
x=-\frac{8}{2}
Tagad atrisiniet vienādojumu x=\frac{3±11}{2}, ja ± ir mīnuss. Atņemiet 11 no 3.
x=-4
Daliet -8 ar 2.
x^{2}-3x-28=\left(x-7\right)\left(x-\left(-4\right)\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet 7 ar x_{1} un -4 ar x_{2}.
x^{2}-3x-28=\left(x-7\right)\left(x+4\right)
Vienkāršojiet visas formas p-\left(-q\right) izteiksmes uz p+q.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}