Pāriet uz galveno saturu
Sadalīt reizinātājos
Tick mark Image
Izrēķināt
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

a+b=-18 ab=1\times 81=81
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā x^{2}+ax+bx+81. Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,-81 -3,-27 -9,-9
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir negatīvs, a un b ir negatīvas. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu 81.
-1-81=-82 -3-27=-30 -9-9=-18
Aprēķināt katra pāra summu.
a=-9 b=-9
Risinājums ir pāris, kas dod summu -18.
\left(x^{2}-9x\right)+\left(-9x+81\right)
Pārrakstiet x^{2}-18x+81 kā \left(x^{2}-9x\right)+\left(-9x+81\right).
x\left(x-9\right)-9\left(x-9\right)
Sadaliet x pirmo un -9 otrajā grupā.
\left(x-9\right)\left(x-9\right)
Iznesiet kopējo reizinātāju x-9 pirms iekavām, izmantojot distributīvo īpašību.
\left(x-9\right)^{2}
Pārveidojiet par binoma kvadrātu.
factor(x^{2}-18x+81)
Šim trinomam ir kvadrāttrinoma forma, iespējams, reizināta ar kopēju reizinātāju. Kvadrāttrinomus var sadalīt reizinātājos, izvelkot kvadrātsaknes no pirmā un pēdējā locekļa.
\sqrt{81}=9
Izvelciet kvadrātsakni no pēdējā locekļa 81.
\left(x-9\right)^{2}
Kvadrāttrinoms ir tāda binoma kvadrāts, kura locekļi ir kvadrāttrinoma pirmā un pēdējā locekļa kvadrātsakņu summa vai starpība; zīmi nosaka kvadrāttrinoma vidējā locekļa zīme.
x^{2}-18x+81=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 81}}{2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 81}}{2}
Kāpiniet -18 kvadrātā.
x=\frac{-\left(-18\right)±\sqrt{324-324}}{2}
Reiziniet -4 reiz 81.
x=\frac{-\left(-18\right)±\sqrt{0}}{2}
Pieskaitiet 324 pie -324.
x=\frac{-\left(-18\right)±0}{2}
Izvelciet kvadrātsakni no 0.
x=\frac{18±0}{2}
Skaitļa -18 pretstats ir 18.
x^{2}-18x+81=\left(x-9\right)\left(x-9\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet 9 ar x_{1} un 9 ar x_{2}.