Pāriet uz galveno saturu
Sadalīt reizinātājos
Tick mark Image
Izrēķināt
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

a+b=6 ab=1\times 5=5
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā x^{2}+ax+bx+5. Lai atrastu a un b, iestatiet sistēmas atrisināt.
a=1 b=5
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir pozitīvs, a un b ir pozitīvas. Sistēmas atrisinājums ir tikai šāds pāris.
\left(x^{2}+x\right)+\left(5x+5\right)
Pārrakstiet x^{2}+6x+5 kā \left(x^{2}+x\right)+\left(5x+5\right).
x\left(x+1\right)+5\left(x+1\right)
Sadaliet x pirmo un 5 otrajā grupā.
\left(x+1\right)\left(x+5\right)
Iznesiet kopējo reizinātāju x+1 pirms iekavām, izmantojot distributīvo īpašību.
x^{2}+6x+5=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-6±\sqrt{6^{2}-4\times 5}}{2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-6±\sqrt{36-4\times 5}}{2}
Kāpiniet 6 kvadrātā.
x=\frac{-6±\sqrt{36-20}}{2}
Reiziniet -4 reiz 5.
x=\frac{-6±\sqrt{16}}{2}
Pieskaitiet 36 pie -20.
x=\frac{-6±4}{2}
Izvelciet kvadrātsakni no 16.
x=-\frac{2}{2}
Tagad atrisiniet vienādojumu x=\frac{-6±4}{2}, ja ± ir pluss. Pieskaitiet -6 pie 4.
x=-1
Daliet -2 ar 2.
x=-\frac{10}{2}
Tagad atrisiniet vienādojumu x=\frac{-6±4}{2}, ja ± ir mīnuss. Atņemiet 4 no -6.
x=-5
Daliet -10 ar 2.
x^{2}+6x+5=\left(x-\left(-1\right)\right)\left(x-\left(-5\right)\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet -1 ar x_{1} un -5 ar x_{2}.
x^{2}+6x+5=\left(x+1\right)\left(x+5\right)
Vienkāršojiet visas formas p-\left(-q\right) izteiksmes uz p+q.