Atrast x
x=-9
x=4
Graph
Koplietot
Kopēts starpliktuvē
a+b=5 ab=-36
Lai atrisinātu vienādojumu, x^{2}+5x-36, izmantojot formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,36 -2,18 -3,12 -4,9 -6,6
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir pozitīvs, pozitīvam skaitlim ir lielāks absolūtā vērtība nekā negatīvs. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Aprēķināt katra pāra summu.
a=-4 b=9
Risinājums ir pāris, kas dod summu 5.
\left(x-4\right)\left(x+9\right)
Pārrakstiet reizinātājos sadalīto izteiksmi \left(x+a\right)\left(x+b\right), izmantojot iegūtās vērtības.
x=4 x=-9
Lai atrastu vienādojumu risinājumus, atrisiniet x-4=0 un x+9=0.
a+b=5 ab=1\left(-36\right)=-36
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā x^{2}+ax+bx-36. Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,36 -2,18 -3,12 -4,9 -6,6
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir pozitīvs, pozitīvam skaitlim ir lielāks absolūtā vērtība nekā negatīvs. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Aprēķināt katra pāra summu.
a=-4 b=9
Risinājums ir pāris, kas dod summu 5.
\left(x^{2}-4x\right)+\left(9x-36\right)
Pārrakstiet x^{2}+5x-36 kā \left(x^{2}-4x\right)+\left(9x-36\right).
x\left(x-4\right)+9\left(x-4\right)
Sadaliet x pirmo un 9 otrajā grupā.
\left(x-4\right)\left(x+9\right)
Iznesiet kopējo reizinātāju x-4 pirms iekavām, izmantojot distributīvo īpašību.
x=4 x=-9
Lai atrastu vienādojumu risinājumus, atrisiniet x-4=0 un x+9=0.
x^{2}+5x-36=0
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-5±\sqrt{5^{2}-4\left(-36\right)}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar 5 un c ar -36.
x=\frac{-5±\sqrt{25-4\left(-36\right)}}{2}
Kāpiniet 5 kvadrātā.
x=\frac{-5±\sqrt{25+144}}{2}
Reiziniet -4 reiz -36.
x=\frac{-5±\sqrt{169}}{2}
Pieskaitiet 25 pie 144.
x=\frac{-5±13}{2}
Izvelciet kvadrātsakni no 169.
x=\frac{8}{2}
Tagad atrisiniet vienādojumu x=\frac{-5±13}{2}, ja ± ir pluss. Pieskaitiet -5 pie 13.
x=4
Daliet 8 ar 2.
x=-\frac{18}{2}
Tagad atrisiniet vienādojumu x=\frac{-5±13}{2}, ja ± ir mīnuss. Atņemiet 13 no -5.
x=-9
Daliet -18 ar 2.
x=4 x=-9
Vienādojums tagad ir atrisināts.
x^{2}+5x-36=0
Tādus kvadrātiskos vienādojumus kā šis var atrisināt, papildinot vienādojumu, līdz tas ir pilnais kvadrātvienādojums. Lai tas būtu pilnais kvadrātvienādojums, vispirms vienādojumam ir jābūt šādā formātā x^{2}+bx=c.
x^{2}+5x-36-\left(-36\right)=-\left(-36\right)
Pieskaitiet 36 abās vienādojuma pusēs.
x^{2}+5x=-\left(-36\right)
Atņemot -36 no sevis, paliek 0.
x^{2}+5x=36
Atņemiet -36 no 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=36+\left(\frac{5}{2}\right)^{2}
Daliet locekļa x koeficientu 5 ar 2, lai iegūtu \frac{5}{2}. Pēc tam abām vienādojuma pusēm pieskaitiet \frac{5}{2} kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}+5x+\frac{25}{4}=36+\frac{25}{4}
Kāpiniet kvadrātā \frac{5}{2}, kāpinot kvadrātā gan daļas skaitītāju, gan saucēju.
x^{2}+5x+\frac{25}{4}=\frac{169}{4}
Pieskaitiet 36 pie \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{169}{4}
Sadaliet reizinātājos x^{2}+5x+\frac{25}{4}. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x+\frac{5}{2}=\frac{13}{2} x+\frac{5}{2}=-\frac{13}{2}
Vienkāršojiet.
x=4 x=-9
Atņemiet \frac{5}{2} no vienādojuma abām pusēm.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}