Pāriet uz galveno saturu
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

a+b=4 ab=3
Lai atrisinātu vienādojumu, x^{2}+4x+3, izmantojot formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Lai atrastu a un b, iestatiet sistēmas atrisināt.
a=1 b=3
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir pozitīvs, a un b ir pozitīvas. Sistēmas atrisinājums ir tikai šāds pāris.
\left(x+1\right)\left(x+3\right)
Pārrakstiet reizinātājos sadalīto izteiksmi \left(x+a\right)\left(x+b\right), izmantojot iegūtās vērtības.
x=-1 x=-3
Lai atrastu vienādojumu risinājumus, atrisiniet x+1=0 un x+3=0.
a+b=4 ab=1\times 3=3
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā x^{2}+ax+bx+3. Lai atrastu a un b, iestatiet sistēmas atrisināt.
a=1 b=3
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir pozitīvs, a un b ir pozitīvas. Sistēmas atrisinājums ir tikai šāds pāris.
\left(x^{2}+x\right)+\left(3x+3\right)
Pārrakstiet x^{2}+4x+3 kā \left(x^{2}+x\right)+\left(3x+3\right).
x\left(x+1\right)+3\left(x+1\right)
Sadaliet x pirmo un 3 otrajā grupā.
\left(x+1\right)\left(x+3\right)
Iznesiet kopējo reizinātāju x+1 pirms iekavām, izmantojot distributīvo īpašību.
x=-1 x=-3
Lai atrastu vienādojumu risinājumus, atrisiniet x+1=0 un x+3=0.
x^{2}+4x+3=0
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 1, b ar 4 un c ar 3.
x=\frac{-4±\sqrt{16-4\times 3}}{2}
Kāpiniet 4 kvadrātā.
x=\frac{-4±\sqrt{16-12}}{2}
Reiziniet -4 reiz 3.
x=\frac{-4±\sqrt{4}}{2}
Pieskaitiet 16 pie -12.
x=\frac{-4±2}{2}
Izvelciet kvadrātsakni no 4.
x=-\frac{2}{2}
Tagad atrisiniet vienādojumu x=\frac{-4±2}{2}, ja ± ir pluss. Pieskaitiet -4 pie 2.
x=-1
Daliet -2 ar 2.
x=-\frac{6}{2}
Tagad atrisiniet vienādojumu x=\frac{-4±2}{2}, ja ± ir mīnuss. Atņemiet 2 no -4.
x=-3
Daliet -6 ar 2.
x=-1 x=-3
Vienādojums tagad ir atrisināts.
x^{2}+4x+3=0
Tādus kvadrātiskos vienādojumus kā šis var atrisināt, papildinot vienādojumu, līdz tas ir pilnais kvadrātvienādojums. Lai tas būtu pilnais kvadrātvienādojums, vispirms vienādojumam ir jābūt šādā formātā x^{2}+bx=c.
x^{2}+4x+3-3=-3
Atņemiet 3 no vienādojuma abām pusēm.
x^{2}+4x=-3
Atņemot 3 no sevis, paliek 0.
x^{2}+4x+2^{2}=-3+2^{2}
Daliet locekļa x koeficientu 4 ar 2, lai iegūtu 2. Pēc tam abām vienādojuma pusēm pieskaitiet 2 kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}+4x+4=-3+4
Kāpiniet 2 kvadrātā.
x^{2}+4x+4=1
Pieskaitiet -3 pie 4.
\left(x+2\right)^{2}=1
Sadaliet reizinātājos x^{2}+4x+4. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{1}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x+2=1 x+2=-1
Vienkāršojiet.
x=-1 x=-3
Atņemiet 2 no vienādojuma abām pusēm.