Atrast r
r = \frac{55591 {(\sqrt{756229} + \sqrt{1162321})}}{135364} \approx 799,887238416
Piešķiriet r
r≔\frac{55591\left(\sqrt{756229}+\sqrt{1162321}\right)}{135364}
Graph
Koplietot
Kopēts starpliktuvē
r=\frac{5351340-2217\times 2489}{\sqrt{10\times 695135-2489^{2}}-\sqrt{10\times 607741-2217^{2}}}
Reiziniet 10 un 535134, lai iegūtu 5351340.
r=\frac{5351340-5518113}{\sqrt{10\times 695135-2489^{2}}-\sqrt{10\times 607741-2217^{2}}}
Reiziniet 2217 un 2489, lai iegūtu 5518113.
r=\frac{-166773}{\sqrt{10\times 695135-2489^{2}}-\sqrt{10\times 607741-2217^{2}}}
Atņemiet 5518113 no 5351340, lai iegūtu -166773.
r=\frac{-166773}{\sqrt{6951350-2489^{2}}-\sqrt{10\times 607741-2217^{2}}}
Reiziniet 10 un 695135, lai iegūtu 6951350.
r=\frac{-166773}{\sqrt{6951350-6195121}-\sqrt{10\times 607741-2217^{2}}}
Aprēķiniet 2489 pakāpē 2 un iegūstiet 6195121.
r=\frac{-166773}{\sqrt{756229}-\sqrt{10\times 607741-2217^{2}}}
Atņemiet 6195121 no 6951350, lai iegūtu 756229.
r=\frac{-166773}{\sqrt{756229}-\sqrt{6077410-2217^{2}}}
Reiziniet 10 un 607741, lai iegūtu 6077410.
r=\frac{-166773}{\sqrt{756229}-\sqrt{6077410-4915089}}
Aprēķiniet 2217 pakāpē 2 un iegūstiet 4915089.
r=\frac{-166773}{\sqrt{756229}-\sqrt{1162321}}
Atņemiet 4915089 no 6077410, lai iegūtu 1162321.
r=\frac{-166773\left(\sqrt{756229}+\sqrt{1162321}\right)}{\left(\sqrt{756229}-\sqrt{1162321}\right)\left(\sqrt{756229}+\sqrt{1162321}\right)}
Atbrīvojieties no iracionalitātes saucēju ar \frac{-166773}{\sqrt{756229}-\sqrt{1162321}}, reizinot skaitītāju un saucēju ar \sqrt{756229}+\sqrt{1162321}.
r=\frac{-166773\left(\sqrt{756229}+\sqrt{1162321}\right)}{\left(\sqrt{756229}\right)^{2}-\left(\sqrt{1162321}\right)^{2}}
Apsveriet \left(\sqrt{756229}-\sqrt{1162321}\right)\left(\sqrt{756229}+\sqrt{1162321}\right). Reizināšanu var pārvērst par kvadrātu starpību, izmantojot šo kārtulu: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
r=\frac{-166773\left(\sqrt{756229}+\sqrt{1162321}\right)}{756229-1162321}
Kāpiniet \sqrt{756229} kvadrātā. Kāpiniet \sqrt{1162321} kvadrātā.
r=\frac{-166773\left(\sqrt{756229}+\sqrt{1162321}\right)}{-406092}
Atņemiet 1162321 no 756229, lai iegūtu -406092.
r=\frac{55591}{135364}\left(\sqrt{756229}+\sqrt{1162321}\right)
Daliet -166773\left(\sqrt{756229}+\sqrt{1162321}\right) ar -406092, lai iegūtu \frac{55591}{135364}\left(\sqrt{756229}+\sqrt{1162321}\right).
r=\frac{55591}{135364}\sqrt{756229}+\frac{55591}{135364}\sqrt{1162321}
Izmantojiet distributīvo īpašību, lai reizinātu \frac{55591}{135364} ar \sqrt{756229}+\sqrt{1162321}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}