Izrēķināt
-\frac{x+1}{x+2}
Diferencēt pēc x
-\frac{1}{\left(x+2\right)^{2}}
Graph
Koplietot
Kopēts starpliktuvē
-\frac{x+2}{x+2}+\frac{1}{x+2}
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. Reiziniet -1 reiz \frac{x+2}{x+2}.
\frac{-\left(x+2\right)+1}{x+2}
Tā kā -\frac{x+2}{x+2} un \frac{1}{x+2} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{-x-2+1}{x+2}
Veiciet reizināšanas darbības izteiksmē -\left(x+2\right)+1.
\frac{-x-1}{x+2}
Apvienojiet līdzīgos locekļus izteiksmē -x-2+1.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{x+2}{x+2}+\frac{1}{x+2})
Lai saskaitītu vai atņemtu izteiksmes, izvērsiet tās, vienādojot saucējus. Reiziniet -1 reiz \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\left(x+2\right)+1}{x+2})
Tā kā -\frac{x+2}{x+2} un \frac{1}{x+2} ir viens un tas pats saucējs, saskaitiet tos, saskaitot to skaitītājus.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-2+1}{x+2})
Veiciet reizināšanas darbības izteiksmē -\left(x+2\right)+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-1}{x+2})
Apvienojiet līdzīgos locekļus izteiksmē -x-2+1.
\frac{\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}-1)-\left(-x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)}{\left(x^{1}+2\right)^{2}}
Jebkurām divām diferencējamām funkcijām divu funkciju dalījuma atvasinājums ir saucējs reiz skaitītāja atvasinājums mīnus skaitītājs reiz saucēja atvasinājums, kas visi izdalīti ar saucēju kvadrātā.
\frac{\left(x^{1}+2\right)\left(-1\right)x^{1-1}-\left(-x^{1}-1\right)x^{1-1}}{\left(x^{1}+2\right)^{2}}
Polinoma atvasinājums ir tā locekļu atvasinājumu summa. Konstanta locekļa atvasinājums ir 0. ax^{n} atvasinājums ir nax^{n-1}.
\frac{\left(x^{1}+2\right)\left(-1\right)x^{0}-\left(-x^{1}-1\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Veiciet aritmētiskās darbības.
\frac{x^{1}\left(-1\right)x^{0}+2\left(-1\right)x^{0}-\left(-x^{1}x^{0}-x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Izvērsiet, izmantojot distributīvo īpašību.
\frac{-x^{1}+2\left(-1\right)x^{0}-\left(-x^{1}-x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Lai sareizinātu vienas bāzes pakāpes, saskaitiet to kāpinātājus.
\frac{-x^{1}-2x^{0}-\left(-x^{1}-x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Veiciet aritmētiskās darbības.
\frac{-x^{1}-2x^{0}-\left(-x^{1}\right)-\left(-x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Noņemiet liekās iekavas.
\frac{\left(-1-\left(-1\right)\right)x^{1}+\left(-2-\left(-1\right)\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Savelciet līdzīgus locekļus.
\frac{-x^{0}}{\left(x^{1}+2\right)^{2}}
Atņemiet -1 no -1 un -1 no -2.
\frac{-x^{0}}{\left(x+2\right)^{2}}
Jebkuram loceklim t t^{1}=t.
\frac{-1}{\left(x+2\right)^{2}}
Jebkuram loceklim t, izņemot 0, t^{0}=1.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}