Atrast a
a=-\frac{1}{\left(2x^{3}+x\right)^{4}}
x\neq 0
Atrast x
x=\frac{\sqrt[3]{6\sqrt{6+81\sqrt{-\frac{1}{a}}}+54\sqrt[4]{-\frac{1}{a}}}+\sqrt[3]{-6\sqrt{6+81\sqrt{-\frac{1}{a}}}+54\sqrt[4]{-\frac{1}{a}}}}{6}
x=\frac{\sqrt[3]{6\sqrt{6+81\sqrt{-\frac{1}{a}}}-54\sqrt[4]{-\frac{1}{a}}}-\sqrt[3]{6\sqrt{6+81\sqrt{-\frac{1}{a}}}+54\sqrt[4]{-\frac{1}{a}}}}{6}\text{, }a<0
Graph
Koplietot
Kopēts starpliktuvē
\left(2x^{3}+x\right)^{4}a=-1
Vienādojums ir standarta formā.
\frac{\left(2x^{3}+x\right)^{4}a}{\left(2x^{3}+x\right)^{4}}=-\frac{1}{\left(2x^{3}+x\right)^{4}}
Daliet abas puses ar \left(x+2x^{3}\right)^{4}.
a=-\frac{1}{\left(2x^{3}+x\right)^{4}}
Dalīšana ar \left(x+2x^{3}\right)^{4} atsauc reizināšanu ar \left(x+2x^{3}\right)^{4}.
a=-\frac{1}{\left(x\left(2x^{2}+1\right)\right)^{4}}
Daliet -1 ar \left(x+2x^{3}\right)^{4}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}