Izrēķināt
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+x
Diferencēt pēc x
x^{3}+2x^{2}+1
Koplietot
Kopēts starpliktuvē
\int t^{3}+2t^{2}+1\mathrm{d}t
Vispirms noteikt nenoteikto integrāli.
\int t^{3}\mathrm{d}t+\int 2t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Integrēt summu terminu pēc termina.
\int t^{3}\mathrm{d}t+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Iznest konstanti pirms iekavām katrā no terminiem.
\frac{t^{4}}{4}+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Tā kā \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} k\neq -1 aizstāt \int t^{3}\mathrm{d}t ar \frac{t^{4}}{4}.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+\int 1\mathrm{d}t
Tā kā \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} k\neq -1 aizstāt \int t^{2}\mathrm{d}t ar \frac{t^{3}}{3}. Reiziniet 2 reiz \frac{t^{3}}{3}.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+t
Atrast 1, kas izmanto kopējo integrāļi kārtulu tabulu \int a\mathrm{d}t=at.
\frac{x^{4}}{4}+\frac{2}{3}x^{3}+x-\left(\frac{0^{4}}{4}+\frac{2}{3}\times 0^{3}+0\right)
Noteiktais integrālis ir vienādojuma nenoteiktais integrālis, kas ir noteikts pie integrācijas augstākā limita, atņemot nenoteikto integrāli pie zemākā integrācijas limita.
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+x
Vienkāršojiet.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}