Atrast N
\left\{\begin{matrix}N=\frac{k}{9}+\frac{V}{\pi k^{2}}\text{, }&k\neq 0\\N\in \mathrm{R}\text{, }&V=0\text{ and }k=0\end{matrix}\right,
Atrast V
V=\frac{\pi \left(9N-k\right)k^{2}}{9}
Koplietot
Kopēts starpliktuvē
V=\pi k^{2}N-\frac{1}{9}\pi k^{3}
Izmantojiet distributīvo īpašību, lai reizinātu \frac{1}{9}\pi k^{2} ar 9N-k.
\pi k^{2}N-\frac{1}{9}\pi k^{3}=V
Mainiet puses tā, lai visi mainīgie locekļi atrastos pa kreisi.
\pi k^{2}N=V+\frac{1}{9}\pi k^{3}
Pievienot \frac{1}{9}\pi k^{3} abās pusēs.
\pi k^{2}N=\frac{\pi k^{3}}{9}+V
Vienādojums ir standarta formā.
\frac{\pi k^{2}N}{\pi k^{2}}=\frac{\frac{\pi k^{3}}{9}+V}{\pi k^{2}}
Daliet abas puses ar \pi k^{2}.
N=\frac{\frac{\pi k^{3}}{9}+V}{\pi k^{2}}
Dalīšana ar \pi k^{2} atsauc reizināšanu ar \pi k^{2}.
N=\frac{k}{9}+\frac{V}{\pi k^{2}}
Daliet V+\frac{\pi k^{3}}{9} ar \pi k^{2}.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}