99 \times 19 \sqrt{ 2 } \div 9(2 \% 5 \sqrt{ 5 } )6-5+2 \times 99 \cos ( 5 )
Izrēķināt
\frac{627\sqrt{10}}{5}+192,246550222165609\approx 588,796168807
Sadalīt reizinātājos
\frac{125400000000000000 \sqrt{10} + 192246550222165609}{1000000000000000} = 588\frac{796168807280384}{1000000000000000} = 588,7961688072804
Koplietot
Kopēts starpliktuvē
99 \cdot 19 \sqrt{2} / 9 {(\frac{2}{100} 5 \sqrt{5})} 6 - 5 + 2 \cdot 99 \cdot 0,9961946980917455
Evaluate trigonometric functions in the problem
6\times \frac{1881\sqrt{2}}{9}\times 5\times \frac{2}{100}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Reiziniet 19 un 99, lai iegūtu 1881.
6\times 209\sqrt{2}\times 5\times \frac{2}{100}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Daliet 1881\sqrt{2} ar 9, lai iegūtu 209\sqrt{2}.
1254\sqrt{2}\times 5\times \frac{2}{100}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Reiziniet 6 un 209, lai iegūtu 1254.
6270\sqrt{2}\times \frac{2}{100}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Reiziniet 1254 un 5, lai iegūtu 6270.
6270\sqrt{2}\times \frac{1}{50}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Vienādot daļskaitli \frac{2}{100} līdz mazākajam loceklim, izvelkot un saīsinot 2.
\frac{6270}{50}\sqrt{2}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Reiziniet 6270 un \frac{1}{50}, lai iegūtu \frac{6270}{50}.
\frac{627}{5}\sqrt{2}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Vienādot daļskaitli \frac{6270}{50} līdz mazākajam loceklim, izvelkot un saīsinot 10.
\frac{627}{5}\sqrt{10}-5+2\times 99\times 0,9961946980917455
Lai reiziniet \sqrt{2} un \sqrt{5}, reiziniet numurus zem kvadrātveida saknes.
\frac{627}{5}\sqrt{10}-5+198\times 0,9961946980917455
Reiziniet 2 un 99, lai iegūtu 198.
\frac{627}{5}\sqrt{10}-5+197,246550222165609
Reiziniet 198 un 0,9961946980917455, lai iegūtu 197,246550222165609.
\frac{627}{5}\sqrt{10}+192,246550222165609
Saskaitiet -5 un 197,246550222165609, lai iegūtu 192,246550222165609.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}