Atrast x (complex solution)
x\in \mathrm{C}
Atrast x
x\in \mathrm{R}
Graph
Koplietot
Kopēts starpliktuvē
9x+6\left(-\frac{3}{2}\right)x+6\left(-\frac{9}{2}\right)=-27
Izmantojiet distributīvo īpašību, lai reizinātu 6 ar -\frac{3}{2}x-\frac{9}{2}.
9x+\frac{6\left(-3\right)}{2}x+6\left(-\frac{9}{2}\right)=-27
Izsakiet 6\left(-\frac{3}{2}\right) kā vienu daļskaitli.
9x+\frac{-18}{2}x+6\left(-\frac{9}{2}\right)=-27
Reiziniet 6 un -3, lai iegūtu -18.
9x-9x+6\left(-\frac{9}{2}\right)=-27
Daliet -18 ar 2, lai iegūtu -9.
9x-9x+\frac{6\left(-9\right)}{2}=-27
Izsakiet 6\left(-\frac{9}{2}\right) kā vienu daļskaitli.
9x-9x+\frac{-54}{2}=-27
Reiziniet 6 un -9, lai iegūtu -54.
9x-9x-27=-27
Daliet -54 ar 2, lai iegūtu -27.
-27=-27
Savelciet 9x un -9x, lai iegūtu 0.
\text{true}
Salīdzināt -27 un -27.
x\in \mathrm{C}
Tas ir patiesi jebkuram x.
9x+6\left(-\frac{3}{2}\right)x+6\left(-\frac{9}{2}\right)=-27
Izmantojiet distributīvo īpašību, lai reizinātu 6 ar -\frac{3}{2}x-\frac{9}{2}.
9x+\frac{6\left(-3\right)}{2}x+6\left(-\frac{9}{2}\right)=-27
Izsakiet 6\left(-\frac{3}{2}\right) kā vienu daļskaitli.
9x+\frac{-18}{2}x+6\left(-\frac{9}{2}\right)=-27
Reiziniet 6 un -3, lai iegūtu -18.
9x-9x+6\left(-\frac{9}{2}\right)=-27
Daliet -18 ar 2, lai iegūtu -9.
9x-9x+\frac{6\left(-9\right)}{2}=-27
Izsakiet 6\left(-\frac{9}{2}\right) kā vienu daļskaitli.
9x-9x+\frac{-54}{2}=-27
Reiziniet 6 un -9, lai iegūtu -54.
9x-9x-27=-27
Daliet -54 ar 2, lai iegūtu -27.
-27=-27
Savelciet 9x un -9x, lai iegūtu 0.
\text{true}
Salīdzināt -27 un -27.
x\in \mathrm{R}
Tas ir patiesi jebkuram x.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}