Atrast y
y=\frac{7x^{2}+8x+7}{3}
Atrast x (complex solution)
x=\frac{\sqrt{21y-33}-4}{7}
x=\frac{-\sqrt{21y-33}-4}{7}
Atrast x
x=\frac{\sqrt{21y-33}-4}{7}
x=\frac{-\sqrt{21y-33}-4}{7}\text{, }y\geq \frac{11}{7}
Graph
Koplietot
Kopēts starpliktuvē
8x-3y+7=-7x^{2}
Atņemiet 7x^{2} no abām pusēm. Atņemot nu nulles jebko, iegūst tā noliegumu.
-3y+7=-7x^{2}-8x
Atņemiet 8x no abām pusēm.
-3y=-7x^{2}-8x-7
Atņemiet 7 no abām pusēm.
\frac{-3y}{-3}=\frac{-7x^{2}-8x-7}{-3}
Daliet abas puses ar -3.
y=\frac{-7x^{2}-8x-7}{-3}
Dalīšana ar -3 atsauc reizināšanu ar -3.
y=\frac{7x^{2}+8x+7}{3}
Daliet -7x^{2}-8x-7 ar -3.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}