Atrast r
r=-2400000000000000000000000000000000\sqrt{15}i\approx -0-9,295160031 \cdot 10^{33}i
r=2400000000000000000000000000000000\sqrt{15}i\approx 9,295160031 \cdot 10^{33}i
Koplietot
Kopēts starpliktuvē
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\times 10^{66}\left(-6\right)\times 10^{-6}
Mainīgais r nevar būt vienāds ar 0, jo dalīšana ar nulli nav definēta. Reiziniet vienādojuma abas puses ar r^{2}.
50\times 10^{3}r^{2}=9\times 10^{75}\times 80\left(-6\right)\times 10^{-6}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 9 un 66, lai iegūtu 75.
50\times 10^{3}r^{2}=9\times 10^{69}\times 80\left(-6\right)
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 75 un -6, lai iegūtu 69.
50\times 1000r^{2}=9\times 10^{69}\times 80\left(-6\right)
Aprēķiniet 10 pakāpē 3 un iegūstiet 1000.
50000r^{2}=9\times 10^{69}\times 80\left(-6\right)
Reiziniet 50 un 1000, lai iegūtu 50000.
50000r^{2}=9\times 1000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
Aprēķiniet 10 pakāpē 69 un iegūstiet 1000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=9000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
Reiziniet 9 un 1000000000000000000000000000000000000000000000000000000000000000000000, lai iegūtu 9000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=720000000000000000000000000000000000000000000000000000000000000000000000\left(-6\right)
Reiziniet 9000000000000000000000000000000000000000000000000000000000000000000000 un 80, lai iegūtu 720000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=-4320000000000000000000000000000000000000000000000000000000000000000000000
Reiziniet 720000000000000000000000000000000000000000000000000000000000000000000000 un -6, lai iegūtu -4320000000000000000000000000000000000000000000000000000000000000000000000.
r^{2}=\frac{-4320000000000000000000000000000000000000000000000000000000000000000000000}{50000}
Daliet abas puses ar 50000.
r^{2}=-86400000000000000000000000000000000000000000000000000000000000000000
Daliet -4320000000000000000000000000000000000000000000000000000000000000000000000 ar 50000, lai iegūtu -86400000000000000000000000000000000000000000000000000000000000000000.
r=2400000000000000000000000000000000\sqrt{15}i r=-2400000000000000000000000000000000\sqrt{15}i
Vienādojums tagad ir atrisināts.
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\times 10^{66}\left(-6\right)\times 10^{-6}
Mainīgais r nevar būt vienāds ar 0, jo dalīšana ar nulli nav definēta. Reiziniet vienādojuma abas puses ar r^{2}.
50\times 10^{3}r^{2}=9\times 10^{75}\times 80\left(-6\right)\times 10^{-6}
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 9 un 66, lai iegūtu 75.
50\times 10^{3}r^{2}=9\times 10^{69}\times 80\left(-6\right)
Lai reizinātu vienas bāzes pakāpes, saskaitiet kāpinātājus. Saskaitiet 75 un -6, lai iegūtu 69.
50\times 1000r^{2}=9\times 10^{69}\times 80\left(-6\right)
Aprēķiniet 10 pakāpē 3 un iegūstiet 1000.
50000r^{2}=9\times 10^{69}\times 80\left(-6\right)
Reiziniet 50 un 1000, lai iegūtu 50000.
50000r^{2}=9\times 1000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
Aprēķiniet 10 pakāpē 69 un iegūstiet 1000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=9000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
Reiziniet 9 un 1000000000000000000000000000000000000000000000000000000000000000000000, lai iegūtu 9000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=720000000000000000000000000000000000000000000000000000000000000000000000\left(-6\right)
Reiziniet 9000000000000000000000000000000000000000000000000000000000000000000000 un 80, lai iegūtu 720000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}=-4320000000000000000000000000000000000000000000000000000000000000000000000
Reiziniet 720000000000000000000000000000000000000000000000000000000000000000000000 un -6, lai iegūtu -4320000000000000000000000000000000000000000000000000000000000000000000000.
50000r^{2}+4320000000000000000000000000000000000000000000000000000000000000000000000=0
Pievienot 4320000000000000000000000000000000000000000000000000000000000000000000000 abās pusēs.
r=\frac{0±\sqrt{0^{2}-4\times 50000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 50000, b ar 0 un c ar 4320000000000000000000000000000000000000000000000000000000000000000000000.
r=\frac{0±\sqrt{-4\times 50000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
Kāpiniet 0 kvadrātā.
r=\frac{0±\sqrt{-200000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
Reiziniet -4 reiz 50000.
r=\frac{0±\sqrt{-864000000000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
Reiziniet -200000 reiz 4320000000000000000000000000000000000000000000000000000000000000000000000.
r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{2\times 50000}
Izvelciet kvadrātsakni no -864000000000000000000000000000000000000000000000000000000000000000000000000000.
r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000}
Reiziniet 2 reiz 50000.
r=2400000000000000000000000000000000\sqrt{15}i
Tagad atrisiniet vienādojumu r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000}, ja ± ir pluss.
r=-2400000000000000000000000000000000\sqrt{15}i
Tagad atrisiniet vienādojumu r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000}, ja ± ir mīnuss.
r=2400000000000000000000000000000000\sqrt{15}i r=-2400000000000000000000000000000000\sqrt{15}i
Vienādojums tagad ir atrisināts.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}