Pāriet uz galveno saturu
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

4x-2-2x^{2}=0
Atņemiet 2x^{2} no abām pusēm.
2x-1-x^{2}=0
Daliet abas puses ar 2.
-x^{2}+2x-1=0
Pārkārtojiet polinomu, lai tas būtu standarta formā. Sakārtojiet locekļus secībā no lielākās līdz mazākajai pakāpei.
a+b=2 ab=-\left(-1\right)=1
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā -x^{2}+ax+bx-1. Lai atrastu a un b, iestatiet sistēmas atrisināt.
a=1 b=1
Tā kā ab ir pozitīvs, a un b ir viena zīme. Tā kā a+b ir pozitīvs, a un b ir pozitīvas. Sistēmas atrisinājums ir tikai šāds pāris.
\left(-x^{2}+x\right)+\left(x-1\right)
Pārrakstiet -x^{2}+2x-1 kā \left(-x^{2}+x\right)+\left(x-1\right).
-x\left(x-1\right)+x-1
Iznesiet reizinātāju -x pirms iekavām izteiksmē -x^{2}+x.
\left(x-1\right)\left(-x+1\right)
Iznesiet kopējo reizinātāju x-1 pirms iekavām, izmantojot distributīvo īpašību.
x=1 x=1
Lai atrastu vienādojumu risinājumus, atrisiniet x-1=0 un -x+1=0.
4x-2-2x^{2}=0
Atņemiet 2x^{2} no abām pusēm.
-2x^{2}+4x-2=0
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar -2, b ar 4 un c ar -2.
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Kāpiniet 4 kvadrātā.
x=\frac{-4±\sqrt{16+8\left(-2\right)}}{2\left(-2\right)}
Reiziniet -4 reiz -2.
x=\frac{-4±\sqrt{16-16}}{2\left(-2\right)}
Reiziniet 8 reiz -2.
x=\frac{-4±\sqrt{0}}{2\left(-2\right)}
Pieskaitiet 16 pie -16.
x=-\frac{4}{2\left(-2\right)}
Izvelciet kvadrātsakni no 0.
x=-\frac{4}{-4}
Reiziniet 2 reiz -2.
x=1
Daliet -4 ar -4.
4x-2-2x^{2}=0
Atņemiet 2x^{2} no abām pusēm.
4x-2x^{2}=2
Pievienot 2 abās pusēs. Jebkuram skaitlim pieskaitot nulli, iegūst to pašu skaitli.
-2x^{2}+4x=2
Tādus kvadrātiskos vienādojumus kā šis var atrisināt, papildinot vienādojumu, līdz tas ir pilnais kvadrātvienādojums. Lai tas būtu pilnais kvadrātvienādojums, vispirms vienādojumam ir jābūt šādā formātā x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=\frac{2}{-2}
Daliet abas puses ar -2.
x^{2}+\frac{4}{-2}x=\frac{2}{-2}
Dalīšana ar -2 atsauc reizināšanu ar -2.
x^{2}-2x=\frac{2}{-2}
Daliet 4 ar -2.
x^{2}-2x=-1
Daliet 2 ar -2.
x^{2}-2x+1=-1+1
Daliet locekļa x koeficientu -2 ar 2, lai iegūtu -1. Pēc tam abām vienādojuma pusēm pieskaitiet -1 kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}-2x+1=0
Pieskaitiet -1 pie 1.
\left(x-1\right)^{2}=0
Sadaliet reizinātājos x^{2}-2x+1. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x-1=0 x-1=0
Vienkāršojiet.
x=1 x=1
Pieskaitiet 1 abās vienādojuma pusēs.
x=1
Vienādojums tagad ir atrisināts. Risinājumi ir tie paši.