Atrast x (complex solution)
x=-\frac{2A^{4}-81}{3\left(A^{2}+9\right)}
A\neq -3i\text{ and }A\neq 3i
Atrast x
x=-\frac{2A^{4}-81}{3\left(A^{2}+9\right)}
Atrast A (complex solution)
A=\frac{\sqrt{3\sqrt{x^{2}-24x+72}-3x}}{2}
A=-\frac{\sqrt{3\sqrt{x^{2}-24x+72}-3x}}{2}
A=-\frac{\sqrt{-3\sqrt{x^{2}-24x+72}-3x}}{2}
A=\frac{\sqrt{-3\sqrt{x^{2}-24x+72}-3x}}{2}
Atrast A
A=-\frac{\sqrt{3\left(\sqrt{x^{2}-24x+72}-x\right)}}{2}
A=\frac{\sqrt{3\left(\sqrt{x^{2}-24x+72}-x\right)}}{2}\text{, }x\leq 3
Graph
Viktorīna
Algebra
5 problēmas, kas līdzīgas:
3 x + \frac { A ^ { 4 } } { 9 + A ^ { 2 } } = 9 - A ^ { 2 }
Koplietot
Kopēts starpliktuvē
3x\left(A-3i\right)\left(A+3i\right)+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Reiziniet vienādojuma abas puses ar \left(A-3i\right)\left(A+3i\right).
\left(3xA-9ix\right)\left(A+3i\right)+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Izmantojiet distributīvo īpašību, lai reizinātu 3x ar A-3i.
3xA^{2}+27x+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Izmantojiet distributīvo īpašību, lai reizinātu 3xA-9ix ar A+3i un apvienotu līdzīgos locekļus.
3xA^{2}+27x+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Izmantojiet distributīvo īpašību, lai reizinātu A-3i ar A+3i un apvienotu līdzīgos locekļus.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{2}\left(A-3i\right)\left(A+3i\right)
Izmantojiet distributīvo īpašību, lai reizinātu A^{2}+9 ar 9.
3xA^{2}+27x+A^{4}=9A^{2}+81+\left(-A^{3}+3iA^{2}\right)\left(A+3i\right)
Izmantojiet distributīvo īpašību, lai reizinātu -A^{2} ar A-3i.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{4}-9A^{2}
Izmantojiet distributīvo īpašību, lai reizinātu -A^{3}+3iA^{2} ar A+3i un apvienotu līdzīgos locekļus.
3xA^{2}+27x+A^{4}=81-A^{4}
Savelciet 9A^{2} un -9A^{2}, lai iegūtu 0.
3xA^{2}+27x=81-A^{4}-A^{4}
Atņemiet A^{4} no abām pusēm.
3xA^{2}+27x=81-2A^{4}
Savelciet -A^{4} un -A^{4}, lai iegūtu -2A^{4}.
\left(3A^{2}+27\right)x=81-2A^{4}
Savelciet visus locekļus, kuros ir x.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81-2A^{4}}{3A^{2}+27}
Daliet abas puses ar 3A^{2}+27.
x=\frac{81-2A^{4}}{3A^{2}+27}
Dalīšana ar 3A^{2}+27 atsauc reizināšanu ar 3A^{2}+27.
x=\frac{81-2A^{4}}{3\left(A^{2}+9\right)}
Daliet 81-2A^{4} ar 3A^{2}+27.
3x\left(A^{2}+9\right)+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Reiziniet vienādojuma abas puses ar A^{2}+9.
3xA^{2}+27x+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Izmantojiet distributīvo īpašību, lai reizinātu 3x ar A^{2}+9.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{2}\left(A^{2}+9\right)
Izmantojiet distributīvo īpašību, lai reizinātu A^{2}+9 ar 9.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{4}-9A^{2}
Izmantojiet distributīvo īpašību, lai reizinātu -A^{2} ar A^{2}+9.
3xA^{2}+27x+A^{4}=81-A^{4}
Savelciet 9A^{2} un -9A^{2}, lai iegūtu 0.
3xA^{2}+27x=81-A^{4}-A^{4}
Atņemiet A^{4} no abām pusēm.
3xA^{2}+27x=81-2A^{4}
Savelciet -A^{4} un -A^{4}, lai iegūtu -2A^{4}.
\left(3A^{2}+27\right)x=81-2A^{4}
Savelciet visus locekļus, kuros ir x.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81-2A^{4}}{3A^{2}+27}
Daliet abas puses ar 3A^{2}+27.
x=\frac{81-2A^{4}}{3A^{2}+27}
Dalīšana ar 3A^{2}+27 atsauc reizināšanu ar 3A^{2}+27.
x=\frac{81-2A^{4}}{3\left(A^{2}+9\right)}
Daliet 81-2A^{4} ar 3A^{2}+27.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}