Pāriet uz galveno saturu
Atrast x
Tick mark Image
Graph

Līdzīgas problēmas no meklēšanas tīmeklī

Koplietot

\left(5x-1\right)\left(5x+1\right)=0
Apsveriet 25x^{2}-1. Pārrakstiet 25x^{2}-1 kā \left(5x\right)^{2}-1^{2}. Kvadrātu starpību var sadalīt reizinātājos, izmantojot formulu: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{5} x=-\frac{1}{5}
Lai atrastu vienādojumu risinājumus, atrisiniet 5x-1=0 un 5x+1=0.
25x^{2}=1
Pievienot 1 abās pusēs. Jebkuram skaitlim pieskaitot nulli, iegūst to pašu skaitli.
x^{2}=\frac{1}{25}
Daliet abas puses ar 25.
x=\frac{1}{5} x=-\frac{1}{5}
Izvelciet kvadrātsakni no abām vienādojuma pusēm.
25x^{2}-1=0
Tādus kvadrātvienādojumus kā šo, kurā ir x^{2} loceklis, bet nav x locekļa, arī var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}, tikai vienādojums jāsakārto standarta formā: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-1\right)}}{2\times 25}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 25, b ar 0 un c ar -1.
x=\frac{0±\sqrt{-4\times 25\left(-1\right)}}{2\times 25}
Kāpiniet 0 kvadrātā.
x=\frac{0±\sqrt{-100\left(-1\right)}}{2\times 25}
Reiziniet -4 reiz 25.
x=\frac{0±\sqrt{100}}{2\times 25}
Reiziniet -100 reiz -1.
x=\frac{0±10}{2\times 25}
Izvelciet kvadrātsakni no 100.
x=\frac{0±10}{50}
Reiziniet 2 reiz 25.
x=\frac{1}{5}
Tagad atrisiniet vienādojumu x=\frac{0±10}{50}, ja ± ir pluss. Vienādot daļskaitli \frac{10}{50} līdz mazākajam loceklim, izvelkot un saīsinot 10.
x=-\frac{1}{5}
Tagad atrisiniet vienādojumu x=\frac{0±10}{50}, ja ± ir mīnuss. Vienādot daļskaitli \frac{-10}{50} līdz mazākajam loceklim, izvelkot un saīsinot 10.
x=\frac{1}{5} x=-\frac{1}{5}
Vienādojums tagad ir atrisināts.