Atrast x
x = -\frac{4 ^ {\frac{2}{3}} {(\sqrt[3]{\sqrt{119} + 11} + \sqrt[3]{11 - \sqrt{119}})}}{4} \approx -2,046380326
x=0
Graph
Koplietot
Kopēts starpliktuvē
2t^{2}-3t+11=0
Aizvietojiet t ar x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\times 11}}{2\times 2}
Visus formas ax^{2}+bx+c=0 vienādojumus var atrisināt, izmantojot kvadrātsaknes formulu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrātsaknes formulā aizstājiet a ar 2, b ar -3 un c ar 11.
t=\frac{3±\sqrt{-79}}{4}
Veiciet aprēķinus.
t\in \emptyset
Tā kā reālajā laukā negatīva skaitļa kvadrātsakne nav definēta, risinājuma nav.
x\in \emptyset
Tā kā t=x^{2}, sākotnējā vienādojumā nav neviena risinājuma.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}