Sadalīt reizinātājos
\left(x-8\right)\left(2x+3\right)
Izrēķināt
\left(x-8\right)\left(2x+3\right)
Graph
Koplietot
Kopēts starpliktuvē
a+b=-13 ab=2\left(-24\right)=-48
Sadaliet izteiksmi reizinātājos, izmantojot grupēšanu. Vispirms izteiksme ir jāpārraksta kā 2x^{2}+ax+bx-24. Lai atrastu a un b, iestatiet sistēmas atrisināt.
1,-48 2,-24 3,-16 4,-12 6,-8
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir negatīvs, negatīvs skaitlis ir lielāks absolūtā vērtība nekā pozitīvs. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Aprēķināt katra pāra summu.
a=-16 b=3
Risinājums ir pāris, kas dod summu -13.
\left(2x^{2}-16x\right)+\left(3x-24\right)
Pārrakstiet 2x^{2}-13x-24 kā \left(2x^{2}-16x\right)+\left(3x-24\right).
2x\left(x-8\right)+3\left(x-8\right)
Sadaliet 2x pirmo un 3 otrajā grupā.
\left(x-8\right)\left(2x+3\right)
Iznesiet kopējo reizinātāju x-8 pirms iekavām, izmantojot distributīvo īpašību.
2x^{2}-13x-24=0
Kvadrātisko polinomu var sadalīt reizinātājos, izmantojot transformāciju ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kur x_{1} un x_{2} ir kvadrātsaknes vienādojuma ax^{2}+bx+c=0 risinājumi.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\left(-24\right)}}{2\times 2}
Kāpiniet -13 kvadrātā.
x=\frac{-\left(-13\right)±\sqrt{169-8\left(-24\right)}}{2\times 2}
Reiziniet -4 reiz 2.
x=\frac{-\left(-13\right)±\sqrt{169+192}}{2\times 2}
Reiziniet -8 reiz -24.
x=\frac{-\left(-13\right)±\sqrt{361}}{2\times 2}
Pieskaitiet 169 pie 192.
x=\frac{-\left(-13\right)±19}{2\times 2}
Izvelciet kvadrātsakni no 361.
x=\frac{13±19}{2\times 2}
Skaitļa -13 pretstats ir 13.
x=\frac{13±19}{4}
Reiziniet 2 reiz 2.
x=\frac{32}{4}
Tagad atrisiniet vienādojumu x=\frac{13±19}{4}, ja ± ir pluss. Pieskaitiet 13 pie 19.
x=8
Daliet 32 ar 4.
x=-\frac{6}{4}
Tagad atrisiniet vienādojumu x=\frac{13±19}{4}, ja ± ir mīnuss. Atņemiet 19 no 13.
x=-\frac{3}{2}
Vienādot daļskaitli \frac{-6}{4} līdz mazākajam loceklim, izvelkot un saīsinot 2.
2x^{2}-13x-24=2\left(x-8\right)\left(x-\left(-\frac{3}{2}\right)\right)
Sadaliet sākotnējo izteiksmi, izmantojot ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Aizvietojiet 8 ar x_{1} un -\frac{3}{2} ar x_{2}.
2x^{2}-13x-24=2\left(x-8\right)\left(x+\frac{3}{2}\right)
Vienkāršojiet visas formas p-\left(-q\right) izteiksmes uz p+q.
2x^{2}-13x-24=2\left(x-8\right)\times \frac{2x+3}{2}
Pieskaitiet \frac{3}{2} pie x, atrodot kopsaucēju un saskaitot kopā skaitītājus. Pēc tam, ja iespējams, saīsiniet daļskaitli līdz mazākajiem locekļiem.
2x^{2}-13x-24=\left(x-8\right)\left(2x+3\right)
Noīsiniet lielāko kopējo reizinātāju 2 šeit: 2 un 2.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}