Atrast x
x=-4
x=3
Graph
Koplietot
Kopēts starpliktuvē
x^{2}+x-12=0
Daliet abas puses ar 2.
a+b=1 ab=1\left(-12\right)=-12
Lai atrisinātu vienādojumu, sadaliet kreisās puses līdzās pēc grupēšanas. Vispirms, kreisajā malā ir jābūt pārrakstītajiem kā x^{2}+ax+bx-12. Lai atrastu a un b, iestatiet sistēmas atrisināt.
-1,12 -2,6 -3,4
Tā kā ab ir negatīvs, a un b ir pretstats zīmes. Tā kā a+b ir pozitīvs, pozitīvam skaitlim ir lielāks absolūtā vērtība nekā negatīvs. Uzskaitiet visus tādu veselo skaitļu pārus, kas sniedz produktu -12.
-1+12=11 -2+6=4 -3+4=1
Aprēķināt katra pāra summu.
a=-3 b=4
Risinājums ir pāris, kas dod summu 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Pārrakstiet x^{2}+x-12 kā \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
Sadaliet x pirmo un 4 otrajā grupā.
\left(x-3\right)\left(x+4\right)
Iznesiet kopējo reizinātāju x-3 pirms iekavām, izmantojot distributīvo īpašību.
x=3 x=-4
Lai atrastu vienādojumu risinājumus, atrisiniet x-3=0 un x+4=0.
2x^{2}+2x-24=0
Visus ax^{2}+bx+c=0 veida vienādojumus var atrisināt, izmantojot kvadrātvienādojuma sakņu formulu \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ar šo kvadrātvienādojuma sakņu formulu iegūst divus atrisinājumus — vienu, kad ± ir saskaitīšana, bet otru, kad tā ir atņemšana.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-24\right)}}{2\times 2}
Šis vienādojums ir standarta formā: ax^{2}+bx+c=0. Kvadrātvienādojuma sakņu formulā \frac{-b±\sqrt{b^{2}-4ac}}{2a} aizvietojiet a ar 2, b ar 2 un c ar -24.
x=\frac{-2±\sqrt{4-4\times 2\left(-24\right)}}{2\times 2}
Kāpiniet 2 kvadrātā.
x=\frac{-2±\sqrt{4-8\left(-24\right)}}{2\times 2}
Reiziniet -4 reiz 2.
x=\frac{-2±\sqrt{4+192}}{2\times 2}
Reiziniet -8 reiz -24.
x=\frac{-2±\sqrt{196}}{2\times 2}
Pieskaitiet 4 pie 192.
x=\frac{-2±14}{2\times 2}
Izvelciet kvadrātsakni no 196.
x=\frac{-2±14}{4}
Reiziniet 2 reiz 2.
x=\frac{12}{4}
Tagad atrisiniet vienādojumu x=\frac{-2±14}{4}, ja ± ir pluss. Pieskaitiet -2 pie 14.
x=3
Daliet 12 ar 4.
x=-\frac{16}{4}
Tagad atrisiniet vienādojumu x=\frac{-2±14}{4}, ja ± ir mīnuss. Atņemiet 14 no -2.
x=-4
Daliet -16 ar 4.
x=3 x=-4
Vienādojums tagad ir atrisināts.
2x^{2}+2x-24=0
Tādus kvadrātiskos vienādojumus kā šis var atrisināt, papildinot vienādojumu, līdz tas ir pilnais kvadrātvienādojums. Lai tas būtu pilnais kvadrātvienādojums, vispirms vienādojumam ir jābūt šādā formātā x^{2}+bx=c.
2x^{2}+2x-24-\left(-24\right)=-\left(-24\right)
Pieskaitiet 24 abās vienādojuma pusēs.
2x^{2}+2x=-\left(-24\right)
Atņemot -24 no sevis, paliek 0.
2x^{2}+2x=24
Atņemiet -24 no 0.
\frac{2x^{2}+2x}{2}=\frac{24}{2}
Daliet abas puses ar 2.
x^{2}+\frac{2}{2}x=\frac{24}{2}
Dalīšana ar 2 atsauc reizināšanu ar 2.
x^{2}+x=\frac{24}{2}
Daliet 2 ar 2.
x^{2}+x=12
Daliet 24 ar 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Daliet locekļa x koeficientu 1 ar 2, lai iegūtu \frac{1}{2}. Pēc tam abām vienādojuma pusēm pieskaitiet \frac{1}{2} kvadrātā. Ar šo darbību vienādojuma kreisā puse kļūst par pilnu kvadrātu.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Kāpiniet kvadrātā \frac{1}{2}, kāpinot kvadrātā gan daļas skaitītāju, gan saucēju.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Pieskaitiet 12 pie \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Sadaliet reizinātājos x^{2}+x+\frac{1}{4}. Kopumā, kad x^{2}+bx+c ir ideālā kvadrātā, to vienmēr var sadalīt reizinātājos kā \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Izvelciet abu vienādojuma pušu kvadrātsakni.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Vienkāršojiet.
x=3 x=-4
Atņemiet \frac{1}{2} no vienādojuma abām pusēm.
Piemēri
Kvadrātiskais vienādojums
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Lineārs vienādojums
y = 3x + 4
Aritmētika
699 * 533
Matricas
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Vienlaicīgs vienādojums
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencēšana
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrācija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ierobežojumus
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}